113 research outputs found

    Stochastic Acceleration in Relativistic Parallel Shocks

    Full text link
    (abridged) We present results of test-particle simulations on both the first and the second order Fermi acceleration at relativistic parallel shock waves. We consider two scenarios for particle injection: (i) particles injected at the shock front, then accelerated at the shock by the first order mechanism and subsequently by the stochastic process in the downstream region; and (ii) particles injected uniformly throughout the downstream region to the stochastic process. We show that regardless of the injection scenario, depending on the magnetic field strength, plasma composition, and the employed turbulence model, the stochastic mechanism can have considerable effects on the particle spectrum on temporal and spatial scales too short to be resolved in extragalactic jets. Stochastic acceleration is shown to be able to produce spectra that are significantly flatter than the limiting case of particle energy spectral index -1 of the first order mechanism. Our study also reveals a possibility of re-acceleration of the stochastically accelerated spectrum at the shock, as particles at high energies become more and more mobile as their mean free path increases with energy. Our findings suggest that the role of the second order mechanism in the turbulent downstream of a relativistic shock with respect to the first order mechanism at the shock front has been underestimated in the past, and that the second order mechanism may have significant effects on the form of the particle spectra and its evolution.Comment: 14 pages, 11 figures (9 black/white and 2 color postscripts). To be published in the ApJ (accepted 6 Nov 2004

    30 years of multi-wavelength observations of 3C 273

    Get PDF
    We present a wide multi-wavelength database of most observations of the quasar 3C 273 obtained during the last 30 years. This database is the most complete set of observations available for an active galactic nucleus (AGN). It contains nearly 20'000 observations grouped together into 70 light curves covering 16 orders of magnitude in frequency from the radio to the gamma-ray domain. The database is constituted of many previously unpublished observations and of most publicly available data gathered in the literature and on the World Wide Web (WWW). It is complete to the best of our knowledge, except in the optical (UBV) domain where we chose not to add all observations from the literature. In addition to the photometric data, we present the spectra of 3C 273 obtained by the International Ultraviolet Explorer (IUE) satellite. In the X-ray domain, we used the spectral fit parameters from the literature to construct the light curves. Apart from describing the data, we show the most representative light curves and the average spectrum of 3C 273. The database is available on the WWW in a homogeneous and clear form and we wish to update it regularly by adding new observations.Comment: 12 pages, 6 figures, to be published in A&AS, data available at: http://obswww.unige.ch/3c273

    CIV 1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei

    Full text link
    [Abridged] We have been exploring a spectroscopic unification for all known types of broad line emitting AGN. The 4D Eigenvector 1 (4DE1) parameter space shows promise as a unification capable of organizing quasar diversity on a sequence primarily governed by Eddington ratio. This paper considers the role of CIV 1549 measures with special emphasis on the CIV 1549 line shift as a principal 4DE1 diagnostic. We use HST archival spectra for 130 sources with S/N high enough to permit reliable CIV 1549 broad component (BC) measures. We find a CIV 1549 BC profile blueshift that is strongly concentrated among (largely radio-quiet: RQ) sources with FWHM(H beta BC) < 4000 km/s (which we call Population A). Narrow line Seyfert 1 (NLSy1, with FWHM H beta < 2000 km/s) sources belong to this population but do not emerge as a distinct class. The systematic blueshift, widely interpreted as arising in a disk wind/outflow, is not observed in broader lined AGN which we call Population B. We find new correlations between FWHM(CIV 1549 BC) and CIV 1549 line shift as well as the equivalent width of CIV 1549. They are seen only in Pop. A sources. CIV 1549 measures enhance the apparent dichotomy at FWHM(Hbeta BC) approx. 4000 \kms\ (Sulentic et al. 2000) suggesting that it has more significance in the context of Broad Line Region structure than the more commonly discussed RL vs. RQ dichotomy. Black hole masses computed from FWHM CIV 1549 BC for about 80 AGN indicate that the CIV 1549 width is a poor virial estimator. Comparison of mass estimates derived from Hbeta BC and CIV 1549 reveals that the latter show different and nonlinear offsets for population A and B sources. A significant number of sources also show narrow line CIV 1549 emission. We present a recipe for CIV 1549 narrow component extraction.Comment: Accepted for publication in the Astrophysical Journa

    INTEGRAL and Swift observations of IGRJ19294+1816 in outburst

    Full text link
    IGRJ19294+1816 was discovered by INTEGRAL in 2009 during a bright X-ray outburst and was classified as a possible Be X-ray binary or supergiant fast X-ray transient. On 2010 October 28, the source displayed a second X-ray outburst and a 2 months-long monitoring with Swift was carried out to follow the evolution of the source X-ray flux during the event. We report on the INTEGRAL and Swift observations of the second X-ray outburst observed from IGRJ19294+1816. We detected pulsations in the X-ray emission from the source at \sim12.5 s up to 50 keV. The source X-ray flux decreased smoothly during the two months of observation displaying only marginal spectral changes. Due to the relatively rapid decay of the source X-ray flux, no significant variations of the source spin period across the event could be measured. This prevented a firm confirmation of the previously suggested orbital period of the source at 117 d. This periodicity was also searched by using archival Swift /BAT data. We detected a marginally significant peak in the periodogram and determined the best period at 116.2\pm0.6 days (estimated chance probability of a spurious detection 1%). The smooth decline of the source X-ray flux across the two months of observations after the onset of the second outburst, together with its relatively low value of the spin period and the absence of remarkable changes in the spectral parameters (i.e., the absorption column density), suggests that IGRJ19294+1816 is most likely another member of the Be X-ray binaries discovered by INTEGRAL and not a supergiant fast X-ray transient.Comment: Accepted for publication in A&A. 7 pages, 10 figure

    Scientific Performance of the ISDC Quick Look Analysis

    Full text link
    The INTEGRAL Science Data Centre (ISDC) routinely monitors the Near Real Time data (NRT) from the INTEGRAL satellite. A first scientific analysis is made in order to check for the detection of new, transient or highly variable sources in the data. Of primary importance for this work is the Interactive Quick Look Analysis (IQLA), which produces JEM-X and ISGRI images and monitors them for interesting astrophysical eventsComment: 4 pages, 3 figures. Proceedings of 5th INTEGRAL Workshop: The INTEGRAL Universe, Munich, 16-20 February 2004. Accepted for publication in European Space Agency Special Publication 552. See paper for institute affiliation

    A kinematic study of the compact jet in quasar B3 1633+382

    Full text link
    We present a study of the motion of compact jet components in quasar B3 1633+382. Through analyzing 14 epochs of VLBI observations of three components (B1, B2, and B3) at 22 GHz, we find two different possibilities of component classification. Thus two corresponding kinematical models can be adopted to explain the evolutionary track of components. One is a linear motion, while another is a helical model. Future observations are needed to provide new kinematical constraints for the motion of these components in this source.Comment: 7 pages, 3 figures; Accepted for publication in A&

    Survival of Chondrocytes in Rabbit Septal Cartilage After Electromechanical Reshaping

    Get PDF
    Electromechanical reshaping (EMR) has been recently described as an alternative method for reshaping facial cartilage without the need for incisions or sutures. This study focuses on determining the short- and long-term viability of chondrocytes following EMR in cartilage grafts maintained in tissue culture. Flat rabbit nasal septal cartilage specimens were bent into semi-cylindrical shapes by an aluminum jig while a constant electric voltage was applied across the concave and convex surfaces. After EMR, specimens were maintained in culture media for 64 days. Over this time period, specimens were serially biopsied and then stained with a fluorescent live–dead assay system and imaged using laser scanning confocal microscopy. In addition, the fraction of viable chondrocytes was measured, correlated with voltage, voltage application time, electric field configuration, and examined serially. The fraction of viable chondrocytes decreased with voltage and application time. High local electric field intensity and proximity to the positive electrode also focally reduced chondrocyte viability. The density of viable chondrocytes decreased over time and reached a steady state after 2–4 weeks. Viable cells were concentrated within the central region of the specimen. Approximately 20% of original chondrocytes remained viable after reshaping with optimal voltage and application time parameters and compared favorably with conventional surgical shape change techniques such as morselization

    The spectral energy distribution of the central parsecs of the nearest AGN

    Full text link
    Spectral energy distributions (SEDs) of the central few tens of parsec region of some of the nearest, most well studied, active galactic nuclei (AGN) are presented. These genuine AGN-core SEDs, mostly from Seyfert galaxies, are characterised by two main features: an IR bump with the maximum in the 2-10 micron range, and an increasing X-ray spectrum in the 1 to ~200 keV region. These dominant features are common to Seyfert type 1 and 2 objects alike. Type 2 AGN exhibit a sharp drop shortward of 2 micron, with the optical to UV region being fully absorbed, while type 1s show instead a gentle 2 micron drop ensued by a secondary, partially-absorbed optical to UV emission bump. Assuming the bulk of optical to UV photons generated in these AGN are reprocessed by dust and re-emitted in the IR in an isotropic manner, the IR bump luminosity represents >70% of the total energy output in these objects while the high energies above 20 keV are the second energetically important contribution. Galaxies selected by their warm IR colours, i.e. presenting a relatively-flat flux distribution in the 12 to 60 micron range have often being classified as AGN. The results from these high spatial resolution SEDs question this criterion as a general rule. It is found that the intrinsic shape of the IR SED of an AGN and inferred bolometric luminosity largely depart from those derived from large aperture data. AGN luminosities can be overestimated by up to two orders of magnitude if relying on IR satellite data. We find these differences to be critical for AGN luminosities below or about 10^{44} erg/s. Above this limit, AGNs tend to dominate the light of their host galaxy regardless of the aperture size used. We tentatively mark this luminosity as a threshold to identify galaxy-light- vs AGN- dominated objects.Comment: 50 pages, 14 figures. Accepted for publication in MNRA
    • …
    corecore