31 research outputs found

    Detection of rotor imbalance, including root cause, severity and location

    Get PDF
    This paper presents a new way of detecting imbalances on wind turbine rotors, by using a harmonic analysis of the rotor response in the fixed frame. The method is capable of distinguishing among different root causes of the imbalance. In addition, the imbalance severity and location, i.e. the affected blade, can be identified. The automatic classification of the imbalance problem is obtained by using a neural network. The performance of the method is illustrated with the help of different fault scenarios, within a high-fidelity simulation environment

    Mucopolysaccharidosis type I: molecular characteristics of two novel alpha-L-iduronidase mutations in Tunisian patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucopolysaccharidosis type I (MPS I) is an autosomal storage disease resulting from defective activity of the enzyme α-L-iduronidase (IDUA). This glycosidase is involved in the degradation of heparan sulfate and dermatan sulfate. MPS I has severe and milder phenotypic subtypes.</p> <p>Aim of study: This study was carried out on six newly collected MPS I patients recruited from many regions of Tunisia.</p> <p>Patients and methods: Mutational analysis of the IDUA gene in unrelated MPS I families was performed by sequencing the exons and intron-exon junctions of IDUA gene.</p> <p>Results</p> <p>Two novel IDUA mutations, p.L530fs (1587_1588 insGC) in exon 11 and p.F177S in exon 5 and two previously reported mutations p.P533R and p.Y581X were detected. The patient in family 1 who has the Hurler phenotype was homozygous for the previously described nonsense mutation p.Y581X.</p> <p>The patient in family 2 who also has the Hurler phenotype was homozygous for the novel missense mutation p.F177S. The three patients in families 3, 5 and 6 were homozygous for the p.P533R mutation. The patient in family 4 was homozygous for the novel small insertion 1587_1588 insGC. In addition, eighteen known and one unknown IDUA polymorphisms were identified.</p> <p>Conclusion</p> <p>The identification of these mutations should facilitate prenatal diagnosis and counseling for MPS I in Tunisia.</p> <p>Background</p> <p>Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disorder caused by the deficient activity of the enzyme of α-L-iduronidase (IDUA, EC 3.2.1.76). This glycosidase is involved in the degradation of heparan sulfate and dermatan sulfate. The clinical phenotype of MPS I ranges from the very severe in Hurler syndrome (MPS IH) to the relatively benign in Scheie syndrome (MPS IS), with an intermediate phenotype designated Hurler/Scheie (MPS IH/S) <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Isolation of complementary and genomic DNAs encoding human α -L- iduronidase <abbrgrp><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr></abbrgrp> have enable the identification of mutations underlying the enzyme defect and resulting in MPS I clinical phenotype. More than 100 mutations have been reported in patients with the MPS I subtypes (Human Gene Mutation Database; <url>http://www.hgmd.org</url>). High prevalence of the common mutations p.W402X and p.Q70X has been described; both of them in the severe clinical forms <abbrgrp><abbr bid="B4">4</abbr><abbr bid="B5">5</abbr></abbrgrp>. A high prevalence of common mutation p.P533R has also been described in MPS I patients with various phenotypes <abbrgrp><abbr bid="B5">5</abbr><abbr bid="B6">6</abbr></abbrgrp>. In addition, rare mutations including single base substitution, deletion, insertion and splicing site mutation have been identified <abbrgrp><abbr bid="B7">7</abbr></abbrgrp>, indicating a high degree of allelic heterogeneity in IDUA gene.</p> <p>Here, we described two novel IDUA mutations in MPS I Tunisian patients. These lesions were homoallelic in all the patients of the six families investigated as consanguineous marriages are still frequent in Tunisia <abbrgrp><abbr bid="B8">8</abbr></abbrgrp>.</p

    Effect of Oral Eliglustat on Splenomegaly in Patients With Gaucher Disease Type 1. The ENGAGE Randomized Clinical Trial

    Get PDF
    Importance Gaucher disease type 1 is characterized by hepatosplenomegaly, anemia, thrombocytopenia, and skeletal disease. A safe, effective oral therapy is needed. Objective To determine whether eliglustat, a novel oral substrate reduction therapy, safely reverses clinical manifestations in untreated adults with Gaucher disease type 1. Design, Setting, and Participants Phase 3, randomized, double-blind, placebo-controlled trial conducted at 18 sites in 12 countries from November 2009 to July 2012 among eligible patients with splenomegaly plus thrombocytopenia and/or anemia. Of 72 patients screened, 40 were enrolled. Interventions Patients were stratified by spleen volume and randomized 1:1 to receive eliglustat (50 or 100 mg twice daily; n = 20) or placebo (n = 20) for 9 months. Main Outcomes and Measures The primary efficacy end point was percentage change in spleen volume in multiples of normal from baseline to 9 months; secondary efficacy end points were change in hemoglobin level and percentage changes in liver volume and platelet count. Results All patients had baseline splenomegaly and thrombocytopenia (mostly moderate or severe), most had mild or moderate hepatomegaly, and 20% had mild anemia. Least-square mean spleen volume decreased by 27.77% (95% CI, −32.57% to −22.97%) in the eliglustat group (from 13.89 to 10.17 multiples of normal) vs an increase of 2.26% (95% CI, −2.54% to 7.06%) in the placebo group (from 12.50 to 12.84 multiples of normal) for an absolute treatment difference of −30.03% (95% CI, −36.82% to −23.24%; P < .001). For the secondary end points, the least-square mean absolute differences between groups all favored eliglustat, with a 1.22-g/dL increase in hemoglobin level (95% CI, 0.57-1.88 g/dL; P < .001), 6.64% decrease in liver volume (95% CI, −11.37% to −1.91%; P = .007), and 41.06% increase in platelet count (95% CI, 23.95%-58.17%; P < .001). No serious adverse events occurred. One patient in the eliglustat group withdrew (non–treatment related); 39 of the 40 patients transitioned to an open-label extension study. Conclusions and Relevance Among previously untreated adults with Gaucher disease type 1, treatment with eliglustat compared with placebo for 9 months resulted in significant improvements in spleen volume, hemoglobin level, liver volume, and platelet count. The clinical significance of these findings is uncertain, and more definitive conclusions about clinical efficacy and utility will require comparison with the standard treatment of enzyme replacement therapy as well as longer-term follow-up

    Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project

    Get PDF
    Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF)method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of aCAD(Computer AidedDetection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%)

    Microbial d-xylonate production

    Get PDF
    d-Xylonic acid is a versatile platform chemical with reported applications as complexing agent or chelator, in dispersal of concrete, and as a precursor for compounds such as co-polyamides, polyesters, hydrogels and 1,2,4-butanetriol. With increasing glucose prices, d-xylonic acid may provide a cheap, non-food derived alternative for gluconic acid, which is widely used (about 80 kton/year) in pharmaceuticals, food products, solvents, adhesives, dyes, paints and polishes. Large-scale production has not been developed, reflecting the current limited market for d-xylonate. d-Xylonic acid occurs naturally, being formed in the first step of oxidative metabolism of d-xylose by some archaea and bacteria via the action of d-xylose or d-glucose dehydrogenases. High extracellular concentrations of d-xylonate have been reported for various bacteria, in particular Gluconobacter oxydans and Pseudomonas putida. High yields of d-xylonate from d-xylose make G. oxydans an attractive choice for biotechnical production. G. oxydans is able to produce d-xylonate directly from plant biomass hydrolysates, but rates and yields are reduced because of sensitivity to hydrolysate inhibitors. Recently, d-xylonate has been produced by the genetically modified bacterium Escherichia coli and yeast Saccharomyces cerevisiae and Kluyveromyces lactis. Expression of NAD(+)-dependent d-xylose dehydrogenase of Caulobacter crescentus in either E. coli or in a robust, hydrolysate-tolerant, industrial Saccharomyces cerevisiae strain has resulted in d-xylonate titres, which are comparable to those seen with G. oxydans, at a volumetric rate approximately 30 % of that observed with G. oxydans. With further development, genetically modified microbes may soon provide an alternative for production of d-xylonate at industrial scale

    RETRACTED ARTICLE: Period of vibrations of framed structures

    No full text
    corecore