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Abstract. This paper presents a new way of detecting imbalances on wind turbine rotors,
by using a harmonic analysis of the rotor response in the fixed frame. The method is capable
of distinguishing among different root causes of the imbalance. In addition, the imbalance
severity and location, i.e. the affected blade, can be identified. The automatic classification
of the imbalance problem is obtained by using a neural network. The performance of the
method is illustrated with the help of different fault scenarios, within a high-fidelity simulation
environment.

1. Introduction
Rotor imbalance may be due to a number of causes, as for example pitch misalignment, blade
damage, poor blade manufacturing tolerances, ice accretion, etc. Pitch misalignment, caused by
one blade pitch angle being offset with respect to the others, may be caused by a wrong mounting
of the blade on the hub, or could indicate a faulty pitch system. The incorrect alignment of blades
is one of the primary wind turbine faults impacting negatively on performance and loads [1]. Ice
accretion may cause significant changes in the airfoil shape, in turn causing both aerodynamic
and mass imbalances, which again may affect loading and performance.

Irrespective of the cause, rotor imbalances significantly affect wind turbine fatigue, and may
result, if protracted in time, in a reduced life. In addition, rotor imbalances may be indicators
of faults. As Operation and Maintenance (O&M) costs account for a very significant portion of
the Cost of Energy (CoE), methods that are capable of early detection of faults may be used
for moving from a classical corrective maintenance approach to a predictive one [2].

Therefore, there is a need to detect rotor imbalances as early and accurately as possible.
Ideally, it would be useful to know what is causing a rotor imbalance problem. For example, one
would like to distinguish a rotor imbalance caused by a misalignment of the blade pitch from
one caused by ice accretion.

In addition, knowing which is (are) the affected blade(s) may be an important piece of
information. For example, in the case of pitch misalignment, if one knew only that the rotor is
imbalanced, one would still have to devise some way to find out which one of the blades has been
mounted incorrectly, maybe by a complicated visual inspection procedure. On the contrary, a
technique that is capable of exactly pinpointing the affected blade might result in a significantly
less expensive and more rapid corrective action. It would be even better if the technique were
also able to say of how much the blade pitch is offset with respect to the others.
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To address all these issues, this paper presents a new technique for identifying rotor
imbalances, their root causes, severity and location. In particular, four different questions are
considered here:

1. Is there a rotor imbalance?

2. Which is the affected blade?

3. What is the severity of the problem?

4. What is causing it?

The paper tries to address these needs by developing a novel method for rotor imbalance
detection. The novelty of the approach is in the use of both the phase and the amplitude
of measurements performed in the fixed system. In addition, neural networks are used for
automating the process of detecting and classifying the problem.

2. Methods
It is well known that a balanced rotor transmits loads to the fixed frame only at the multiple
harmonics of the number B of blades (B×Rev, where “Rev” refers to the rotor frequency).
Conversely, an unbalanced rotor transfers loads at all harmonics, the 1×Rev being typically
the most energetic spurious frequency. Accordingly, a good indicator of rotor imbalances is the
appearance of the 1×Rev harmonic. The amplitude of this harmonic is related to the severity of
the imbalance. In addition, the phase of this harmonic is related to the location of the imbalance,
i.e. the affected blade.

These facts are readily verified by considering a signal measured in the fixed reference system,
as for example the nodding moment N at the hub. Computing N from the out-of-plane bending
moments of the blades, one finds

N =
B∑
i=1

mi cosψi, (1)

where ψi and mi are the azimuth angle and bending moment of the ith blade, respectively.
For a balanced rotor operating in steady wind conditions, the blade moments are periodic
with constant amplitudes and a shift of 1/Bth of a revolution with respect to each other.
Therefore, when summed up in the fixed frame of reference, these loads compensate each other
and eventually cancel out. However, a constant bias in one of the blades caused, for example,
by a pitch misalignment, will result in a nodding moment 1×Rev harmonic with the same phase
of the misaligned blade. Similar conclusions hold for other measurements (e.g. accelerations)
performed in the fixed frame of reference.

Clearly, when operating in turbulent wind conditions, the response of the wind turbine is not
exactly periodic. However, when observed on long enough time windows, the effect of turbulent
wind fluctuations tend to compensate and only negligible 1×Rev harmonics will appear for a
well balanced rotor.

Rotor imbalance is invariably associated with the presence of a significant 1×Rev harmonic
in the fixed frame response. In addition, the affected blade may be identified by using the phase
of this harmonic. Moreover, distinguishing among different root causes of the imbalance may
in general require additional information. For example, asymmetric ice accretion on blades will
cause the appearance of the 1×Rev harmonic in the response, similarly to pitch misalignment,
but it will typically create a more significant power loss because of the reduced efficiency of
the blade airfoils. Therefore, by looking at both response harmonics and power one may try to
distinguish pitch misalignment from ice accretion. Clearly, additional information, if available,
may be used to increase the detection reliability.
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The fusion of multiple sensor data in a simple and robust algorithm for fault detection is a
non-trivial exercise. To ease this process, the present work uses neural networks because of their
flexibility in modeling complex and possibly non-linear processes.

An artificial neural network is a set of interconnected simple computing elements called
neurons. A standard neuron consists of a node that computes a single output by processing
multiple inputs through a function, most often chosen as a sigmoid [3]. The weights associated
with inputs and outputs define the free parameters of the network, which should be identified
to obtain a desired behavior. From this point of view, a neural network is simply a parametric
function composed of free parameters and assumed modes. The universal approximation
property of neural networks ensures that the functional reconstruction error of any given function
of sufficient regularity can be bounded as desired, for some appropriately large number of hidden
neurons (cf. [4]). This property makes neural networks useful tools for developing black-box
models of complex systems, as the case considered in the present work.

Among the many possible network architectures, here we consider a particular type known as
multi-layer perceptron (MLP) [3]. As symbolically depicted in Fig. 1, a MLP is fed by a set of
measurements (indicated in the figure by grey circles), which are multiplied by specific weights
(blue arrows) and are in turn given as inputs to each neuron (green circles) in the hidden layers.
The neuron outputs can be either given as input to a next hidden neuron layer, or considered
as the final output, shown as yellow circles in the output layer. Finally, each output represents
a class to which the set of input parameters belongs.

Input layer

1st
Hidden layer

n-th
Hidden layer

Output layer

Figure 1. Generic multi-layer perceptron architecture.

At first, the network has to be trained. The training process consists simply in estimating the
weights given a known set of measurements and of output classes. Fast and effective algorithms
are available to solve such estimation problem, such as the back propagation algorithm used
here [3]. Using a heuristic approach, the training process is repeated multiple times by increasing
the number of neurons and possibly of hidden layers, until a satisfactory result in terms of
classification performance has been obtained.

The total number of available data points are divided into three sets. The first (70%) is the
training set, the second (15%) is the validation one, while the third (15%) is the test set. The
first two sets are used iteratively for estimating the weights of the network. Finally, the test set,
which has not been included in the training data set, is used for assessing the generality of the
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trained network and quantifying its performance.
In this work, the network is trained by using load harmonics and other wind turbine response

data (i.e. wind speed and torque) depending on the different scenarios of interest. Once trained,
the network is fed with data coming from an operating wind turbine, and it automatically
classifies the response in terms of the presence or not of rotor imbalance, its location, cause and
severity.

Networks with different number of inputs and neurons will be used here for solving different
problems of increasing complexity. In the next section, the simple problem of detecting a rotor
imbalance will be analyzed first. Afterwards, the problem of detecting which blade is affected
by pitch misalignment and with which severity is addressed. Finally, the ability of the proposed
approach to distinguish pitch misalignment from iced conditions is demonstrated.

3. Results
The system generating the analysis data is a high-fidelity multibody aeroservoelastic model of a
3 MW wind turbine, developed with the code Cp-Lambda [5]. With such a tool, different pitch
misalignment and/or different iced conditions can be simulated, yielding synthetic data that
approximates what would be typically recorded on board a real wind turbine in the field. The
virtual measurements are first post-processed in order to extract the required input variables for
the network, and then fed to the training and validation process. It is important to stress that
the entire procedure, from measurements to fault classification, will stay the same when using
data gathered in the field.

3.1. Detecting rotor imbalances
The problem of detecting whether there is a pitch misalignment in one of the blades is considered
next. A total number of 648 10-minute simulations were performed, considering 13 different
pitch misalignment angles in each blade, between -2 to 2 deg. Each pitch misalignment was
simulated under 18 different wind conditions for different mean wind speeds, turbulence intensity
levels and turbulent realizations. Nodding moment measurements were first collected from the
simulation and demodulated in order to compute the 1×Rev harmonic amplitude AN . Finally,
load harmonics were averaged over 10 minutes in order to remove the fast oscillations induced
by turbulence.

The network has two output classes: balanced and unbalanced rotor. By a trial and error
approach, it was found that a very simple network with a single output layer and three neurons
is capable of distinguishing between the balanced and unbalanced cases. In particular, Fig. 2
shows on the left the architecture of the neural network and on the right the confusion matrix
of the test data set.

Input layer Hidden layer Output layer

Turbine balanced

Turbine unbalanced

𝐴𝑁

Figure 2. Classification results for imbalance detection at a wind speed of 7 m/s.
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In the confusion matrix, rows refer to predictions, while columns to the true state of the
system. The generic cell (m, n) indicates the number of instances and percentage in which the
nth output is classified as a state m. Accordingly, diagonal cells show where true and predicted
classes match, whereas off-diagonal cells indicate erroneous classifications. For example, an
element in cell (1, 2) refers to a case belonging to the second class (unbalanced turbine) identified
erroneously as belonging to the first (balanced turbine). Hence, it can be viewed as a false
positive indication. Viceversa, an element in cell (2,1) refers to a false negative, for the wind
turbine is classified as unbalanced and a false alarm is generated. The rightmost column and
bottom row show, respectively, the accuracy of each predicted class, and each true class. Finally,
the very last cell indicates the global accuracy of the method, reporting the percentage of correct
classifications (upper green number) and percentage of errors (lower red number).

Since there is no false indication in the present case, a perfect classification is obtained for
this problem.

3.2. Identifying the misaligned blade
As stated earlier, while the amplitude of the 1×Rev fixed frame signal is associated to the
presence of a pitch misalignment, the related phase can indicate which blade is affected. Hence,
it is expected that feeding the neural network with the 1×Rev sine Ns and cosine Nc components
of the signal could identify the location of the pitch misalignment. To this end, 10-minute
averaged components Ns and Nc were given as inputs to a simple classifier with four possible
outputs: pitch misalignment in the first, second or third blade, and no misalignment.

Input layer Hidden layer Output layer

Pitch misalignment 
in blade #1

No pitch misalignment

𝑁s

𝑁c

Pitch misalignment 
in blade #2

Pitch misalignment 
in blade #3

Figure 3. Classification results for pitch misalignment location detection at a wind speed of
7 m/s.

Figure 3 shows on the left the architecture of the neural network, with the input layer
consisting of the two measurements Ns and Nc, the hidden layer consisting of four neurons and
the output layer with the four output classes. On the right, the confusion matrix shows that
the method is capable in all cases of exactly distinguishing a faulty from a non-faulty condition.
In addition, in the faulty case the method is always able to detect the affected blade.

3.3. Estimating the severity of pitch misalignment
Maintaining the same input parameters used earlier, it is possible to further refine the
classification with the intention of quantifying the fault. Indeed, an exact estimation of the
pitch misalignment angle is not necessary, while it can be useful to know an approximate range
in order to asses the urgency of repair. For that reason, 13 output categories were defined
according to different pitch angle intervals of 0.5 deg amplitude.

The left part of Fig. 4 depicts the network employed for this problem, characterized by 13
output categories and only two neurons. In this case, data coming from different wind speeds
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were used to train the network. Since wind speed affects load amplitudes to a significant extent,
the wind speed itself was given as input to the network to ease detection. The confusion matrix,
on the right part of the same figure, shows again that the algorithm assigned all analyzed
conditions to the correct category.

Input layer Hidden layer Output layer

Pitch misalignment blade #1 >0.5 deg

No pitch misalignment

𝑁s

𝑁c

𝑉

Pitch misalignment blade #1 (0÷0.5] deg

Pitch misalignment blade #1 [-0.5÷0) deg

Pitch misalignment blade #1 <-0.5 deg

Same categories for blade #2

Same categories for blade #3

Figure 4. Classification network for pitch misalignment severity estimation.

3.4. Detection of root causes
As already mentioned, asymmetric ice accretion is a common source of rotor imbalances.
However, ice accretion differs from pitch misalignment for it will typically generate a more
pronounced performance loss than a pure pitch misalignment case. Accordingly, torque (or
power) is considered as an additional input to the classification element. In the partial load
region II, the machine operates at a constant aerodynamic torque (or power) coefficient CT

(CP ). Therefore, a suitable input to the network is the difference between the actual CT (CP )
and a reference one, CTref

(CPref
). A similar approach can be followed in the full power region

III, using this time torque T (or power P ) instead of the non-dimensional coefficient, as these
quantities remain constant as wind speed changes.

The network architecture employed here, not shown for the sake of brevity, is similar to the
one displayed in Fig. 4, with the addition of a new input, i.e. CT −CTref

in region II and T −Tref
in region III, and of a new output class representing the ice accretion case. The aerodynamic
torque is obtained from the torque balance equation (cf. Ref. [7]), in order to consider the rotor
dynamic response.

A total number of 189 symmetric and asymmetric iced conditions, for different wind
speeds and turbulence intensity levels, were considered. The simulations included 21 different
combinations of three types of ice accretion, from very light to moderate. The mass distribution
and the aerodynamic lift, drag and moment coefficients of the blades were changed according to
the specific ice accretion, using data taken from Ref. [6].

The confusion plot of the obtained results, not shown here, demonstrates again the ability
of the algorithm to distinguish between pitch misalignment and iced conditions. Moreover, for
the pitch misalignment cases, the algorithm is able to detect the location and the severity of the
problem as well.

In addition, in order to clarify whether the additional input parameter represented by torque
is necessary or not for an effective classification, the very same problem was solved eliminating
the torque entry from the neural network. Training was repeated, resulting in a more complicated
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architecture. Despite the additional complexity of the network, the algorithm was not able to
correctly classify the different scenarios, demonstrating that it is indeed necessary to include the
aerodynamic performance of the rotor to discriminate the various cases.

4. Conclusions and outlook
A novel method was developed to automatically detect imbalances on a wind turbine rotor. The
method uses a harmonic analysis in the fixed frame to detect if imbalance is present, to what
extent and in which blade. Additional rotor response data may be used to classify the root cause
of the imbalance. Differently from other approaches, information on blade airfoil aerodynamic
performance, which is typically difficult to obtain, is not necessary for the proposed method.

With the help of a high-fidelity aeroservoelastic simulation model, the method has been
tested in a wide range of scenarios, of which only a limited subset was shown here. In general,
it was found that the use of a properly designed and trained neural network can greatly ease
the problem of imbalance detection and classification.

In a continuation of this research, the method should be validated by trying to detect
imbalances in the field for wind turbines on which known pitch misalignments have been
set. Additional, we are considering the use of the proposed method to detect possible mass
imbalances, as discussed in Ref. [8].
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