916 research outputs found
Examining individual differences in language learning: A neurocognitive model of language aptitude
A common practice in the cognitive neurosciences is to investigate population-typical phenomena, treating individuals as equal except for a few outliers that are usually discarded from analyses or that disappear on group-level patterns. Only a few studies to date have captured the heterogeneity of language processing across individuals as so-called “individual differences”; fewer have explicitly researched language aptitude, which designates an individual’s ability for acquiring foreign languages. Existing studies show that, relative to average learners, very gifted language learners display different task-related patterns of functional activation and connectivity during linguistic tasks, and structural differences in white and grey matter morphology, and in white matter connectivity. Despite growing interest in language aptitude, there is no recent comprehensive review, nor a theoretical model to date that includes the neural level. To fill this gap, we review neuroscientific research on individual differences in language learning and language aptitude and present a first, preliminary neurocognitive model of language aptitude. We suggest that language aptitude could arise from an advantageous neurocognitive profile, which leads to high intrinsic motivation and proactive engagement in language learning activities. On the neural level, interindividual differences in the morphology of the bilateral auditory cortex constrain individual neural plasticity, as is evident in the speed and efficiency of language learning. We suggest that language learning success is further dependent upon highly efficient auditory-motor connections (speech-motor networks) and the structural characteristics of dorsal and ventral fibre tracts during language learning
Association between mean platelet volume levels and inflammation in SLE patients presented with arthritis
Background: Systemic lupus erythematosus (SLE) may be characterized by periods of remissions and chronic or acute relapses. The complexity of clinical presentation of the SLE patients leads to incorrect evaluation of disease activity. Mean platelet volume (MPV) has been studied as a simple inflammatory marker in several diseases. There is no study in the literature about MPV levels in adult SLE patients with arthritis.Objectives: We aimed to investigate the MPV levels in the SLE population with arthritis during and between activations.Methods: The study consisted of 44 SLE patients with arthritis in activation period (Group 1), the same 44 SLE patients with arthritis in remission period (Group 2) and 44 healthy controls (Group 3). Erythrocyte sedimentation rate (ESR), creactive protein (CRP), white blood cell count, platelet count, and mean platelet volume (MPV) levels were retrospectively recorded from patient files.Results: The mean ages of the SLE subjects were 42 ± 16 years, while the mean ages of controls was 41 ± 17 years. MPV was significantly lower in Group 1(7.66±0.89fL) than in Group 2 (8.61±1.06 fL) and Group 3(8.62±1.11fL) (p<0.0001). The differences between groups reached statistical significance.Conclusions: We suggest that MPV levels decrease in patients with arthritis of SLE activation when compared to the same patients in remission and healthy controls.Key words: Systemic lupus erythematosus, Arthritis, Mean platelet volum
Raman Enhancement on a Broadband Meta-Surface
Cataloged from PDF version of article.Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material
Grating coupler integrated photodiodes for plasmon resonance based sensing
Cataloged from PDF version of article.In this work, we demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism. Enhanced transmission of light is monitored via the integrated photodiode by tuning the angle of incidence of a collimated beam near the sharp plasmon resonance condition. Slight changes of the effective refractive index (RI) shift the resonance angle, resulting in a change in the photocurrent. Owing to the planar sensing mechanism, the design permits a high areal density of sensing spots. In the design, absence of holes that facilitate resonant transmission of light, allows an easy-to-implement fabrication procedure and relative insensitivity to fabrication errors. Theoretical and experimental results agree well. An equivalent long-term RI noise of 6.3 x 10(-6) RIU/root Hz is obtained by using an 8 mW He-Ne laser, compared to a shot-noise limited theoretical sensitivity of 5.61 x 10(-9) RIU/root Hz. The device features full benefits of grating-coupled plasmon resonance, such as enhancement of sensitivity for non-zero azimuthal angle of incidence. Further sensitivity enhancement using balanced detection and optimal plasmon coupling conditions are discussed
Short-term plasticity of neuro-auditory processing induced by musical active listening training
Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3–4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing
The role of the angular gyrus in semantic cognition: A synthesis of five functional neuroimaging studies
Semantic knowledge is central to human cognition. The angular gyrus (AG) is widely considered a key brain region for semantic cognition. However, the role of the AG in semantic processing is controversial. Key controversies concern response polarity (activation vs. deactivation) and its relation to task difficulty, lateralization (left vs. right AG), and functional-anatomical subdivision (PGa vs. PGp subregions). Here, we combined the fMRI data of five studies on semantic processing (n = 172) and analyzed the response profiles from the same anatomical regions-of-interest for left and right PGa and PGp. We found that the AG was consistently deactivated during non-semantic conditions, whereas response polarity during semantic conditions was inconsistent. However, the AG consistently showed relative response differences between semantic and non-semantic conditions, and between different semantic conditions. A combined analysis across all studies revealed that AG responses could be best explained by separable effects of task difficulty and semantic processing demand. Task difficulty effects were stronger in PGa than PGp, regardless of hemisphere. Semantic effects were stronger in left than right AG, regardless of subregion. These results suggest that the AG is engaged in both domain-general task-difficulty-related processes and domain-specific semantic processes. In semantic processing, we propose that left AG acts as a "multimodal convergence zone" that binds different semantic features associated with the same concept, enabling efficient access to task-relevant features
Rebaudioside A inhibits pentylenetetrazol-induced convulsions in rats
AbstractThe safety of patients with epilepsy consuming sweetening agents, which is becoming increasingly prevalent for various reasons, is a topic that should be emphasized as sensitively as it is for other diseases. Patients with epilepsy consume sweetening agents for different reasons such being diabetic or overweight. They can occasionally be exposed to sweetening agents unrestrainedly through consuming convenience food, primarily beverages. This study aimed to investigate the effects of rebaudioside A (Reb-A), which is a steviol glycoside produced from the herb Stevia rebaudiana (Bertoni), on epileptic seizures and convulsions induced by pentylenetetrazole (PTZ). Forty-eight male rats were used. Twenty-four rats were administered 35 mg/kg PTZ to trigger epileptiform activity; the remaining 24 rats were administered 70 mg/kg PTZ to trigger the convulsion model. The epileptiform activity was evaluated by spike percentage, whereas convulsion was evaluated by Racine's Convulsion Scale and the onset time of the first myoclonic jerk. Statistical analysis revealed a statistically significant decrease in the Racine's Convulsion Scale score and increase in the latency of first myoclonic jerk in a dose-dependent manner for the rat groups in which PTZ epilepsy had been induced and Reb-A had been administered. For the groups that were administered Reb-A, the spike decrease was apparent in a dose-dependent manner, based on the spike percentage calculation. These results indicated that Reb-A has positive effects on PTZ-induced convulsions
Assessing the state of the Akyatan and Tuzla lagoons of the Mediterranean coast of Turkey
We report evidence for the physical-geographical characteristic of two large water areas of Turkey's wetlands, the Tuzla and Akyatan lagoons of the Mediterranean coast. Their location, morphometric parameters, and the characteristics of the hydrological regime are provided. For the first time, an assessment is made of the state of the lagoons from physicochemical and hydrobiological indices. The pioneering monitoring studies are used to make recommendations for optimization and the possible restoration of the lagoons. © 2008
- …