6 research outputs found

    New biodegradable polylactide material with antimicrobial properties

    Get PDF
    This study aimed to investigate the bactericidal, fungicidal and non-phytotoxic properties of vapor permeable polylactide films containing five different concentrations (in the range of 0.2–1.0%) of thiabendazole. All films showed bactericidal properties on Staphylococcus aureus and Escherichia coli. Thiabendazole introduced into polylactide affected the antifungal activity of the materials containing 0.8 and 1.0% thiabendazole. The films containing thiabendazole were characterized by increased permeability. The vapor permeability of the film increased with the increase of the biocide content in the composites. The new materials had no a negative effect on the growth and development of monocotyledonous and dicotyledonous plants. It has been shown that the presence of thiabendazole increases the water vapor permeability of polylactide films. The obtained materials are biodegradable and can be used in horticulture and agriculture to protect plants against pathogens. The use of films with biocide properties will reduce the use of plant protection products. This is particularly important due to the need to protect biodiversity in the ecosystem of agricultural soils

    New seed coating containing Trichoderma viride with anti-pathogenic properties

    No full text
    Background To ensure food security in the face of climate change and the growing world population, multi-pronged measures should be taken. One promising approach uses plant growth-promoting fungi (PGPF), such as Trichoderma, to reduce the usage of agrochemicals and increase plant yield, stress tolerance, and nutritional value. However, large-scale applications of PGPF have been hampered by several constraints, and, consequently, usage on a large scale is still limited. Seed coating, a process that consists of covering seeds with low quantities of exogenous materials, is gaining attention as an efficient and feasible delivery system for PGPF. Methods We have designed a new seed coating composed of chitin, methylcellulose, and Trichoderma viride spores and assessed its effect on canola (Brassica napus L.) growth and development. For this purpose, we analyzed the antifungal activity of T. viride against common canola pathogenic fungi (Botrytis cinerea, Fusarium culmorum, and Colletotrichum sp.). Moreover, the effect of seed coating on germination ratio and seedling growth was evaluated. To verify the effect of seed coating on plant metabolism, we determined superoxide dismutase (SOD) activity and expression of the stress-related RSH (RelA/SpoT homologs). Results Our results showed that the T. viride strains used for seed coating significantly restricted the growth of all three pathogens, especially F. culmorum, for which the growth was inhibited by over 40%. Additionally, the new seed coating did not negatively affect the ability of the seeds to complete germination, increased seedling growth, and did not induce the plant stress response. To summarize, we have successfully developed a cost-effective and environmentally responsible seed coating, which will also be easy to exploit on an industrial scale

    The Contribution of <i>Trichoderma viride</i> and Metallothioneins in Enhancing the Seed Quality of <i>Avena sativa</i> L. in Cd-Contaminated Soil

    No full text
    Pollution of arable land with heavy metals is a worldwide problem. Cadmium (Cd) is a toxic metal that poses a severe threat to humans’ and animals’ health and lives. Plants can easily absorb Cd from the soil, and plant-based food is the main means of exposure to this hazardous element for humans and animals. Phytoremediation is a promising plant-based approach to removing heavy metals from the soil, and plant growth-promoting micro-organisms such as the fungi Trichoderma can enhance the ability of plants to accumulate metals. Inoculation of Avena sativa L. (oat) with Trichoderma viride enhances germination and seedling growth in the presence of Cd and, in this study, the growth of 6-month-old oat plants in Cd-contaminated soil was not increased by inoculation with T. viride, but a 1.7-fold increase in yield was observed. The content of Cd in oat shoots depended on the Cd content in the soil. Still, it was unaffected by the inoculation with T. viride. A. sativa metallothioneins (AsMTs) participate in plant–fungi interaction, however, their role in this study depended on MT type and Cd concentration. The inoculation of A. sativa with T. viride could be a promising approach to obtaining a high yield in Cd-contaminated soil without increasing the Cd content in the plant

    Guanosine tetraphosphate (ppGpp) is a new player in Brassica napusBrassica\ napus L. seed development

    No full text
    International audienceRapeseed oil, constituting 12% of global vegetable oil production, is susceptible to quality degradation due to stress-induced incomplete seed degreening, fatty acid oxidation, or poor nutrient accumulation. We hypothesise that the hyperphosphorylated nucleotide alarmone ppGpp (guanosine tetraphosphate), acts as a pivotal regulator of these processes, given its established roles in nutrient management, degreening, and ROS regulation in leaves. Using qPCR, UHPLC-MS/MS, and biochemical methods, our study delves into the impact of ppGpp on seed nutritional value. We observed a positive correlation between ppGpp levels and desiccation, and a negative correlation with photosynthetic pigment levels. Trends in antioxidant activity suggest that ppGpp may negatively influence peroxidases, thereby safeguarding against chlorophyll decomposition. Notably, despite increasing ppGpp levels, sugars, proteins and oils appear unaffected. This newfound role of ppGpp in seed development suggests it regulates the endogenous antioxidant system during degreening and desiccation, preserving nutritional quality. Further validation through mutant-based research is needed

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore