6,255 research outputs found
Biogeochemical variations at the Porcupine Abyssal Plain sustained Observatory in the northeast Atlantic Ocean, from weekly to inter-annual timescales
We present high-resolution autonomous measurements of carbon dioxide partial pressure p(CO2) taken in situ at the Porcupine Abyssal Plain sustained Observatory (PAP-SO) in the northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010–2012. Measurements of p(CO2) made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a fluorescence and nitrate concentration data) to analyse weekly to seasonal controls on p(CO2) flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under-saturation of CO2 in surface waters throughout the year which gives rise to a perennial CO2 sink. Comparison with an earlier data set collected at the site (2003–2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of deep winter mixing and the intensity of the spring bloom.The 2010–2012 period shows an overall increase in p(CO2) values when compared to the 2003–2005 period as would be expected from increases due to anthropogenic CO2 emissions. The surface temperature, wind speed and MLD measurements are similar for both periods of time. Future work should incorporate daily CO2 flux measurements made using CO2 sensors at 1 m depth and the in situ wind speed data now available from the UK Met Office Buoy
Local Anisotropy of Fluids using Minkowski Tensors
Statistics of the free volume available to individual particles have
previously been studied for simple and complex fluids, granular matter,
amorphous solids, and structural glasses. Minkowski tensors provide a set of
shape measures that are based on strong mathematical theorems and easily
computed for polygonal and polyhedral bodies such as free volume cells (Voronoi
cells). They characterize the local structure beyond the two-point correlation
function and are suitable to define indices of
local anisotropy. Here, we analyze the statistics of Minkowski tensors for
configurations of simple liquid models, including the ideal gas (Poisson point
process), the hard disks and hard spheres ensemble, and the Lennard-Jones
fluid. We show that Minkowski tensors provide a robust characterization of
local anisotropy, which ranges from for vapor
phases to for ordered solids. We find that for fluids,
local anisotropy decreases monotonously with increasing free volume and
randomness of particle positions. Furthermore, the local anisotropy indices
are sensitive to structural transitions in these simple
fluids, as has been previously shown in granular systems for the transition
from loose to jammed bead packs
Implications of changing El Niño patterns for biological dynamicsin the equatorial Pacific Ocean
El Niño events are known to strongly affect biological production and ecosystem structure in the tropical Pacific. Understanding and predicting biological processes in this area are hampered because the existing in situ observing system focuses primarily on physical measurements and does not observe key biological parameters; the only high spatial and temporal resolution biology-related observations are from the global array of ocean color satellites which provide an estimate of surface chlorophyll concentrations only. Since the1990s, an apparent shift of the El Niño maximum sea-surface temperature (SST) warm anomaly from the eastern to the central equatorial Pacific has frequently been observed. Satellite observations show significant changes in chlorophyll-a(Chl-a), new production (NP) and total primary production(PP) in the equatorial Pacific associated with these new central Pacific (CP) El Niño events (also called El Niño Modoki) relative to eastern Pacific El Niños. During CP-El Niños, NP, Chl-a and PP in the central basin are depressed relative to EP-El Niños and lower values of Chl-a and PP coincide spatially with higher SST in the central Pacific. While surface Chl-a, and integrated NP and PP over the entire equatorial band, decrease during both CP and EP-El Niños, the magnitude of this decrease seems to depend more on the intensity than type of event. The changing spatial patterns have significant implications for equatorial biological dynamics if, as has been suggested, CP-El Niños increase in frequency in the future
Minkowski Tensors of Anisotropic Spatial Structure
This article describes the theoretical foundation of and explicit algorithms
for a novel approach to morphology and anisotropy analysis of complex spatial
structure using tensor-valued Minkowski functionals, the so-called Minkowski
tensors. Minkowski tensors are generalisations of the well-known scalar
Minkowski functionals and are explicitly sensitive to anisotropic aspects of
morphology, relevant for example for elastic moduli or permeability of
microstructured materials. Here we derive explicit linear-time algorithms to
compute these tensorial measures for three-dimensional shapes. These apply to
representations of any object that can be represented by a triangulation of its
bounding surface; their application is illustrated for the polyhedral Voronoi
cellular complexes of jammed sphere configurations, and for triangulations of a
biopolymer fibre network obtained by confocal microscopy. The article further
bridges the substantial notational and conceptual gap between the different but
equivalent approaches to scalar or tensorial Minkowski functionals in
mathematics and in physics, hence making the mathematical measure theoretic
method more readily accessible for future application in the physical sciences
Second order analysis of geometric functionals of Boolean models
This paper presents asymptotic covariance formulae and central limit theorems
for geometric functionals, including volume, surface area, and all Minkowski
functionals and translation invariant Minkowski tensors as prominent examples,
of stationary Boolean models. Special focus is put on the anisotropic case. In
the (anisotropic) example of aligned rectangles, we provide explicit analytic
formulae and compare them with simulation results. We discuss which information
about the grain distribution second moments add to the mean values.Comment: Chapter of the forthcoming book "Tensor Valuations and their
Applications in Stochastic Geometry and Imaging" in Lecture Notes in
Mathematics edited by Markus Kiderlen and Eva B. Vedel Jensen. (The second
version mainly resolves minor LaTeX problems.
On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy
Titanium is commonly added to nickel superalloys but has a well-documented
detrimental effect on oxidation resistance. The present work constitutes the
first atomistic-scale quantitative measurements of grain boundary and bulk
compositions in the oxide scale of a current generation polycrystalline nickel
superalloy performed through atom probe tomography. Titanium was found to be
particularly detrimental to oxide scale growth through grain boundary
diffusion
First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches
We present first evidence for the so-called Head-Tail asymmetry signature of
neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the
1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils
induced by Weakly Interacting Massive Particle (WIMPs) but one where the
differential ionization is poorly understood. We show that the distribution of
recoil energies and directions induced here by Cf-252 neutrons matches well
that expected from massive WIMPs. The results open a powerful new means of
searching for a galactic signature from WIMPs.Comment: 4 pages, 6 figures, 1 tabl
- …