1,033 research outputs found

    Gittikçe artan taşıt kazalarının sebepleri

    Get PDF
    Taha Toros Arşivi, Dosya No: 2/A-Albert Gabrielİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033

    Relations between Entropies Produced in Nondeterministic Thermodynamic Processes

    Get PDF
    Landauer's erasure principle is generalized to nondeterministic processes on systems having an arbitrary number of non-symmetrical logical states. The condition that the process is applied in the same way, irrespective of the initial logical state, imposes some restrictions on the individual heat exchanges associated with each possible transition. The complete set of such restrictions are derived by a statistical analysis of the phase-space flow induced by the process. Landauer's erasure principle can be derived from and is a special case of these.Comment: 12 pages with one figure; a final major revision in presentation; physical assumptions are clarified no

    Heat Transfer Operators Associated with Quantum Operations

    Get PDF
    Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.Comment: A significant revision is made; 33 pages with 2 figure

    Molecular Signal Modeling of a Partially Counting Absorbing Spherical Receiver

    Get PDF
    To communicate at the nanoscale, researchers have proposed molecular communication as an energy-efficient solution. The drawback to this solution is that the histogram of the molecules' hitting times, which constitute the molecular signal at the receiver, has a heavy tail. Reducing the effects of this heavy tail, inter-symbol interference (ISI), has been the focus of most prior research. In this paper, a novel way of decreasing the ISI by defining a counting region on the spherical receiver's surface facing towards the transmitter node is proposed. The beneficial effect comes from the fact that the molecules received from the back lobe of the receiver are more likely to be coming through longer paths that contribute to ISI. In order to justify this idea, the joint distribution of the arrival molecules with respect to angle and time is derived. Using this distribution, the channel model function is approximated for the proposed system, i.e., the partially counting absorbing spherical receiver. After validating the channel model function, the characteristics of the molecular signal are investigated and improved performance is presented. Moreover, the optimal counting region in terms of bit error rate is found analytically.Comment: submitted to Transactions on Communication

    The Current Perspectives of Stem Cell Therapy in Orthopedic Surgery

    Get PDF
    Context: Musculoskeletal injuries may be painful, troublesome, life limiting and also one of the global health problems. There has been considerable amount of interest during the past two decades to stem cells and tissue engineering techniques in orthopedic surgery, especially to manage special and compulsive injuries within the musculoskeletal system. Evidence Acquisition: The aim of this study was to present a literature review regarding the most recent progress in stem cell procedures and current indications in orthopedics clinical care practice. The Medline and PubMed library databases were searched for the articles related with stem cell procedures in the field of orthopedic surgery and additionally the reference list of each article was also included to provide a comprehensive evaluation. Results: Various sources of stem cells have been studied for orthopedics clinical care practice. Stem cell therapy has successfully used for major orthopedic procedures in terms of bone-joint injuries (fractures-bone defects, nonunion, and spinal injuries), osteoarthritis-cartilage defects, ligament-tendon injuries, femoral head osteonecrosis and osteogenesis imperfecta. Stem cells have also used in bone tissue engineering in combining with the scaffolds and provided faster and better healing of tissues. Conclusions: Large amounts of preclinical studies have been made of stem cells and there is an increasing interest to perform these studies within the human population but preclinical studies are insufficient; therefore, much more and efficient studies should be conducted to evaluate the efficacy and safety of stem cells

    Finitely Many Dirac-Delta Interactions on Riemannian Manifolds

    Get PDF
    This work is intended as an attempt to study the non-perturbative renormalization of bound state problem of finitely many Dirac-delta interactions on Riemannian manifolds, S^2, H^2 and H^3. We formulate the problem in terms of a finite dimensional matrix, called the characteristic matrix. The bound state energies can be found from the characteristic equation. The characteristic matrix can be found after a regularization and renormalization by using a sharp cut-off in the eigenvalue spectrum of the Laplacian, as it is done in the flat space, or using the heat kernel method. These two approaches are equivalent in the case of compact manifolds. The heat kernel method has a general advantage to find lower bounds on the spectrum even for compact manifolds as shown in the case of S^2. The heat kernels for H^2 and H^3 are known explicitly, thus we can calculate the characteristic matrix. Using the result, we give lower bound estimates of the discrete spectrum.Comment: To be published in JM
    corecore