23 research outputs found

    Decoupled Sampling-Based Motion Planning for Multiple Autonomous Marine Vehicles

    Get PDF
    There is increasing interest in the deployment and operation of multiple autonomous marine vehicles (AMVs) for a number of challenging scientific and commercial operational mission scenarios. Some of the missions, such as geotechnical surveying and 3D marine habitat mapping, require that a number of heterogeneous vehicles operate simultaneously in small areas, often in close proximity of each other. In these circumstances safety, reliability, and efficient multiple vehicle operation are key ingredients for mission success. Additionally, the deployment and operation of multiple AMVs at sea are extremely costly in terms of the logistics and human resources required for mission supervision, often during extended periods of time. These costs can be greatly minimized by automating the deployment and initial steering of a vehicle fleet to a predetermined configuration, in preparation for the ensuing mission, taking into account operational constraints. This is one of the core issues addressed in the scope of the Widely Scalable Mobile Underwater Sonar Technology project (WiMUST), an EU Horizon 2020 initiative for underwater robotics research. WiMUST uses a team of cooperative autonomous ma- rine robots, some of which towing streamers equipped with hydrophones, acting as intelligent sensing and communicat- ing nodes of a reconfigurable moving acoustic network. In WiMUST, the AMVs maintain a fixed geometric formation through cooperative navigation and motion control. Formation initialization requires that all the AMVs start from scattered positions in the water and maneuver so as to arrive at required target configuration points at the same time in a completely au- tomatic manner. This paper describes the decoupled prioritized vehicle motion planner developed in the scope of WiMUST that, together with an existing system for trajectory tracking, affords a fleet of vehicles the above capabilities, while ensuring inter- vehicle collision and streamer entanglement avoidance. Tests with a fleet of seven marine vehicles show the efficacy of the system planner developed.Peer reviewe

    TRIDENT: A Framework for Autonomous Underwater Intervention

    Get PDF
    TRIDENT is a STREP project recently approved by the European Commission whose proposal was submitted to the ICT call 4 of the 7th Framework Program. The project proposes a new methodology for multipurpose underwater intervention tasks. To that end, a cooperative team formed with an Autonomous Surface Craft and an Intervention Autonomous Underwater Vehicle will be used. The proposed methodology splits the mission in two stages mainly devoted to survey and intervention tasks, respectively. The project brings together research skills specific to the marine environments in navigation and mapping for underwater robotics, multi-sensory perception, intelligent control architectures, vehiclemanipulator systems and dexterous manipulation. TRIDENT is a three years project and its start is planned by first months of 2010.This work is partially supported by the European Commission through FP7-ICT2009-248497 projec

    DexROV: Enabling effective dexterous ROV operations in presence of communication latency

    Get PDF
    Subsea interventions in the oil & gas industry as well as in other domains such as archaeology or geological surveys are demanding and costly activities for which robotic solutions are often deployed in addition or in substitution to human divers - contributing to risks and costs cutting. The operation of ROVs (Remotely Operated Vehicles) nevertheless requires significant off-shore dedicated manpower to handle and operate the robotic platform and the supporting vessel. In order to reduce the footprint of operations, DexROV proposes to implement and evaluate novel operation paradigms with safer, more cost effective and time efficient ROV operations. As a keystone of the proposed approach, manned support will in a large extent be delocalized within an onshore ROV control center, possibly at a large distance from the actual operations, relying on satellite communications. The proposed scheme also makes provision for advanced dexterous manipulation and semi-autonomous capabilities, leveraging human expertise when deemed useful. The outcomes of the project will be integrated and evaluated in a series of tests and evaluation campaigns, culminating with a realistic deep sea (1,300 meters) trial in the Mediterranean sea

    Overview and first year progress of the Widely scalable Mobile Underwater Sonar Technology H2020 project

    Get PDF
    open20siPubblicazione su rivista di contributo a Convegno -10th IFAC Conference on Control Applications in Marine Systems (CAMS2016)The Widely scalable Mobile Underwater Sonar Technology (WiMUST) project is an H2020 Research and Innovation Action funded by the European Commission. The action's main goal is to develop robotic technologies exploiting Autonomous Underwater Vehicles (AUVs) for geotechnical surveying and geophysical exploration. The paper briefly describes the project and its state of the art after the first year of activities.openIndiveri, Giovanni; Antonelli, Gianluca; Arrichiello, Filippo; Caffaz, Andrea; Caiti, Andrea; Casalino, Giuseppe; Volpi, Nicola Catenacci; de Jong, Ivan Bielic; De Palma, Daniela; Duarte, Henrique; Gomes, Joao Pedro; Grimsdale, Jonathan; Jesus, Sergio; Kebkal, Konstantin; Kelholt, Elbert; Pascoal, Antonio; Polani, Daniel; Pollini, Lorenzo; Simetti, Enrico; Turetta, AlessioIndiveri, Giovanni; Antonelli, Gianluca; Arrichiello, Filippo; Caffaz, Andrea; Caiti, Andrea; Casalino, Giuseppe; Volpi, Nicola Catenacci; de Jong, Ivan Bielic; De Palma, Daniela; Duarte, Henrique; Gomes, Joao Pedro; Grimsdale, Jonathan; Jesus, Sergio; Kebkal, Konstantin; Kelholt, Elbert; Pascoal, Antonio; Polani, Daniel; Pollini, Lorenzo; Simetti, Enrico; Turetta, Alessi

    Widely scalable mobile underwater sonar technology: an overview of the H2020 WiMUST project

    Get PDF
    The Widely scalable Mobile Underwater Sonar Technology (WIMUST) project is an H2020 Research and Innovation Action funded by European Commission. The project aims at developing a system of cooperative autonomous underwater vehicles (AUVs) for geotechnical surveying and geophysical exploration. The paper describes the main objectives of the project, given an overview of the methodologies adopted to achieve them, and summarizes the work done in the first year of R&D work

    PULSAR: Testing the Technologies for On-Orbit Assembly of a Large Telescope

    Get PDF
    The EU project PULSAR (Prototype of an Ultra Large Structure Assembly Robot) carried out a feasibility analysis for a potential mission that could demonstrate robotic technology for autonomous assembly of a large space telescope. The project performed the analysis using two hardware demonstrators, one devoted to show the assembly of five segmented mirror tiles using a robotic manipulator, and another one showing extended mobility for assembling a large structure in low gravity conditions. The hardware demonstrators were complemented with a simulation analysis to demonstrate the operation of a fully integrated system and to address the challenges especially in the field of attitude and orbital control. The techniques developed in the project support the path toward In-Space Servicing, Assembly and Manufacturing (ISAM)

    Distributed Dynamic Programming for Adaptive On-line Planning of AUVs Team Mission with Communication Constraints

    Get PDF
    SUMMARY An algorithm for adaptive on-line planning of environmental exploration missions with a team of Autonomous Underwater Vehicles (AUVs) is proposed. The algorithm has the primary goal of determining an estimate of the sampled environmental quantity with an estimation error below a prescribed threshold. The additional degree of freedom of the algorithm is exploited to spread the team over the exploration area, in order to minimize mission time while, at the same time, the communication connectivity of the team is preserved. A distributed dynamic programming approach is employed in order to satisfy these two conflicting requirements. RIASSUNTO Si propone un algoritmo adattativo per l’esplorazione ambientale mediante un team di veicoli sottomarini autonomi cooperanti. Lo scopo primario dell’algoritmo è quello di determinare una stima della grandezza ambientale misurata con un errore inferiore ad una soglia prefissata. Un grado di libertà addizionale dell’algoritmo è impiegato per distribuire il team sull’area di esplorazione, al fine di minimizzare, per esempio, il tempo totale di missione, mentre, nello stesso tempo, viene preservata la connettività fra i veicoli del team. Per soddisfare contemporaneamente questi due obiettivi contrastanti è proposta una soluzione basata sulla programmazione dinamica distribuita
    corecore