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Distributed Dynamic Programming for Adaptive On-line Planning 

of AUVs Team Missions with Communication Constraints 
 

A. Caiti, G. Casalino, A. Turetta, R. Viviani 
 

Abstract—An algorithm for adaptive on-line planning of environmental exploration 

missions with a team of Autonomous Underwater Vehicles (AUVs) is proposed. The algorithm 

has the primary goal of determining an estimate of the sampled environmental quantity with 

an estimation error below a prescribed threshold. The additional degree of freedom of the 

algorithm is exploited to spread the team over the exploration area, in order to minimize 

mission time while, at the same time, the communication connectivity of the team is preserved. 

A distributed dynamic programming approach is employed in order to satisfy these two 

conflicting requirements. 

I. INTRODUCTION 

Networked systems have recently experienced phenomenal growth in numerous engineering 
fields. Thanks to the increased capability in creating small and low-cost mobile platforms and 
the progresses in communication systems, the deployment of networked mobile agent in a 
number of applications becomes possible. In particular, multi-robot systems offer potential 
advantages in performance, robustness, and versatility for sensor-driven tasks such as survey, 
exploration, and environmental monitoring. There are many examples in the literature of 
applications of robot cooperation, from robotic soccer teams [1], to the exploration of 
unknown environments [2],  [3]; other important examples come from the military field, 
where teams of unmanned vehicles (land, aerial, underwater) are asked to perform operations 
such as border patrol [4] or mine counter measurements [5]. 

New interesting aspects about the topic of multi-robot cooperation have been introduced in 
[6] in particular with regard to formation control [7] and leader following [8]. Research on 
Autonomous Underwater Vehicle (AUV) cooperation in the ocean environment had a 
somewhat slower start with respect to other fields, mainly as a consequence of the 
communication and localization constraints posed by the marine environment; in particular, 
the absence of a GPS-like localization system, and the severe range and bandwidth limitation 
of underwater communication make it very hard to simply transpose general robotic 
techniques to the underwater scenario. 

An attempt to translate formation control in the marine context has been reported in [9]. In 
[10] a new behaviour-based approach has been introduced and applied to the control of a fleet 
of surface vehicles, while in [11], [12] formation control has been extended to the coordinate 
path-following of marine vehicles, considering communication delays and failures. An 
interesting approach within this line of research has been proposed and investigated in [13], as 
referred to ocean gliders with the task of identifying the gradient of environmental 
oceanographic quantities. 

Specific applications require different types of communication technologies: wireless local 
area networks can be easily established among surface vehicles through radio links, while 
acoustic modems are generally used for communication between underwater vehicles. 
Underwater acoustic communication suffers from transmission delay, multi-path fading and 
limited range and bandwidth.  
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This paper tackles the problem of a behaviour-based adaptive mission planning for a team 
of AUVs cooperating in an environmental monitoring mission (e.g., measurement of the 
temperature field) subject to communication constraints, with regard to range limitations. 
Mission adaptation aims to maintain a desired accuracy on the reconstruction of the 
environmental field, through estimation of the local smoothness properties of the field itself as 
new measurements become available. Following our previous research [16], [17], the 
accuracy of the environmental map is ensured exploiting the approximation properties of 
Radial Basis Functions (RBFs). The innovative contribution of this work is in the exploitation 
of an additional degree of freedom of the adaptive algorithm: this is employed to spread the 
AUV team over the investigation area (hence attempting to minimize the mission time) while 
at the same time preserving the connectivity of the team in the form of a chained 
communication structure where the distance between two adjacent nodes is maintained below 
a prescribed threshold. This is accomplished with the application of a distributed dynamic 
programming approach. While in this paper we focus on a serial chained communication 
structure, the approach can be extended to more complex chained structure or to 
reconfigurable structure. Moreover, the proposed method is well suited to be performed by a 
team of Folaga class AUVs [15], equipped with an acoustic modem or a wireless LAN 
communication device. 

The paper is organized as follows: in the next section the problem is formally stated and the 
cooperative adaptive sampling algorithm is introduced in its general form, considering the 
preservation of the network links as additional requirements for the vehicles. In section 3 the 
adaptive constrained exploration algorithm is described. In section 4 simulation results are 
presented and, in the last section, conclusions are given. 
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Fig. 1.  On the left part, the network topology and the discretized set of candidate measuring points. On the right part, the selection process 
of the next sampling points seen as minimum-cost path problem.  

 

II. PROBLEM STATEMENT 

The general framework of the adaptive sampling problem has been presented in our 
previous works [16], [17]; here the basic concepts are briefly recalled, for completeness, and 
the general framework is extended to the case in which additional range constraints among the 
vehicles are enforced. Let us suppose we have the availability of n AUVs, each one  equipped 
with a network device to communicate with the others up to a maximum range maxD , and a 

sensor able to point-wise sample an environmental quantity θ at the geographical coordinates 
( , )x y=x . The time-scale variation of the oceanographic field is supposed to be larger than 
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the sampling mission time-scale . Let A be the geographical domain of interest, i.e., A∈x . Let 

, jj k
x  be the kj-th measurement point of the vehicle j; let ( ) { },

1 1

hkn
j

h i

h i

M x
= =

=∪∪  be the set of 

sampling points known by the j-th vehicle after its last measurement, so 
( ) ( ) ( ){ }( ) ;  j jj

I M Mθ θ= = ∈x x  is the information set available to the vehicle j. Let S be an 

estimation algorithm that computes an estimate ˆ
j

θ of the quantity θ over the whole region A 

on the basis of the current available information ( )j
I , i.e. ( ) ( )( )ˆ j

j S Iθ =x . On the basis of the 

estimation algorithm S and the available information set, one can define the estimation error: 
 

( ) ( ) ( )ˆ
j jε θ θ= −x x x         (1) 

 
The main objective of the mission is to survey the region so that the estimation error is 

everywhere below a given threshold. Moreover, it is desirable to spread the team over the 
region A, in order to obtain the maximum possible area coverage in the minimum time; 
however, since the vehicles share (some) information, communication connectivity must be 
preserved among the team. While in [16], [17] it was assumed that a broadcasting node was 
always available to all vehicles (as for instance in the case of re-surfacing and radio 
communication), in this work we assume that the communication takes place underwater 
through acoustic modems. To maintain communication links, it is assumed that the team has a 
chained serial structure: the team members are labeled from 1 to n, and each vehicle is the 
node of a mobile serial network, with static topology. This means that the j-th vehicle is only 
connected to the vehicle (j-1)-th and (j+1)-th, see the left part of figure 1. The index j indicates 
the position of the vehicle into the serial network. 

The general cooperative strategy to attain the two mission goals proposed in this paper is 
based on the approximation properties of RBFs and on the application of dynamic 
programming in a distributed fashion. Let us suppose the vehicles have an initial configuration 
such that the communication constraints are satisfied. As soon as the vehicle j completes the 
kj-th sampling measurement and communicates it to all the others in the team, the information 

set ( )j
kI  becomes available. On the basis of the information set ( )j

kI  each vehicle computes its 

exploring radius ( )
1

j

kρ + , i.e. a circumference centred at the last sampling point ( )
( )

,
j

k kx y of 

radius ( )
1

j

kρ + . The exploring radius ( )
1

j

kρ +  is chosen so that the error of the estimation map is 

below the required threshold at every point inside the circle, assuming the local smoothness of 

the environmental field at the point ( )
( )

1 1,
j

k kx y+ +  to be the same of that estimated at the point 

( )
( )

,
j

k kx y . The selection of the specific point ( )
( )

1 1,
j

k kx y+ +  on the circumference of centre 

( )
( )

,
j

k kx y  and radius ( )
1

j

kρ +  does not influence the expected accuracy of the estimated oceanic 

field: hence this additional degree of freedom can be used to satisfy the other mission 
requirements. Let us suppose that each vehicle shares the information about its exploring 

radius ( )
1

j

kρ +  with the others mobile agents, and that it can choose from a finite set, 

( ) ( ) ( ) ( ){ }1 2, , ,j j j j

m mP p p p= … , of m points belonging to its exploring circumference. It is possible 
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to define a cost function related to the choice of the point ( )j
ap  by the vehicle number j with 

respect to other vehicles’ choices. The vehicles in the team select their next sampling point as 
the solution of a distributed dynamic programming problem that minimizes the cost function.  

This cooperative approach is well suited to the operation of an AUV, since the sampling 
points are chosen in a convenient neighborhood of the current vehicle position. The choice of 

both the estimation algorithm and the exploring radius ( )
1

j

kρ +  have been discussed in [16], [17]; 

now the selection of the next sampling point ( )
( )

1 1,
j

k kx y+ +  that allows to satisfy the additional 

constraint is investigated, and in the following section a solution method based on dynamic 
programming is presented. 

 

III. ADAPTIVE CONSTRAINED COOPERATIVE EXPLORATION ALGORITHM 

Let us consider the the vehicles as the nodes of a mobile serial network, with static 
topology, as defined in the previous section. The selection of the sampling points is 
synchronized in accordance with the following adaptive planning algorithm:  

A.  Error estimation and Computation of the exploring radius 

On the basis of the available information set I, the oceanographic quantity θ is estimated 
exploiting the approximation properties of RBFs. In the RBFs framework the estimation error 
can be bounded by the following equation:  

 

( ) ( ) ( ) ( )( )( ) S F hρε θ θ
ΦΦ

= − ≤x x x x x      (2) 

 

where ( )θ x  is the environmental quantity measured at x , ( )S x  the estimation of ( )θ x on 

the basis of the available information set I, ( )hρ x is the local fill distance and it depends on 

the local density of sampling points: 
 

( )
( )

( ) 2
w ,

sup  min w
jMB y

h yρ
ρ ∈∈

=
x

- x     (3) 

 

while ( )FΦ ⋅  (the power function) is a known function that depends only on the specific 

RBF choice (gaussian, multiquadric, etc.); some common expressions of the power function 
are reported in [18]. 

Under some additional technical assumptions (decay to zero of the RBF Fourier transform  

and ( )S x  smoother than ( )θ x ), the j-th vehicle determines its next exploring radius 1
j

kρ +  as 

the local fill distance that allows to satisfy the mission error requirements through Equation 
(2).  

B.  Distributed dynamic programming: backward phase  

The next sampling point for each vehicle is chosen as the solution of a minimum-cost path 
problem by adding to the network the virtual nodes S and E, whose arches have no cost, see 
figure 1. Starting from the last node of the network, i.e. the vehicle number n, the following 
procedure is repeated until the first node (the vehicle number 1) is reached: 
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• The (j+1)-th vehicle determines its exploring radius ( )1

1

j

kρ
+

+ , as described in the previous 

subsection, and sends this information to the vehicle number j.  

• The j-th vehicle computes the Cost Matrix 1j

jC + : each element 
abc  of  the Cost Matrix 

is related to the choice of the point ( )1j

bp
+  taken by the vehicle (j+1) with respect to the 

choice of the point ( )j

ap  taken by the vehicle number j. The value of the cost is given by 

the following rule: 
 

( )

1

1
max2

1,

j

b

j j

ab a b

j j

a b

p A

c p p D

p p otherwiseϕ

+

+

+

+∞ ∉



= +∞ − >



,           (4) 

 
where A is the geographical domain of interest, maxD the maximum distance between 

two topologically adjacent vehicles that allows to maintain the network connection, 

( )1,j j

a b
p pϕ +  is the value of a suitable scalar potential field generated at the point j

ap  by 

the past measurements points (
ix M∈ ) and by 1j

bp
+  as a new, hypothetical, measurement 

point for the vehicle (j+1)-th.  
• The potential field is defined as:  
 

( )1

1

2 2 2

1 1
,

i

j j

a b n n n
j j j j

x M
a b a i a fd

Q
p p q

p p p x p x
ϕ +

+
∈

 
 = + −
 − − − 

∑ ,   (5) 

 
where q, Q, n, are positive numbers and 

fdx A∈ is the point, in the region A, where the 

fill distance is reached. The scalar potential field defined in (5) allows to spread the 
vehicles over the area taking in to account the past sampling points (considering them as 
electric charges, n=2) and the zones where the density of measurements is lower (the 
point fdx A∈  attracts the mobile agents). The proposed cost function (eq. 4) allows to 

spread the vehicle over the region and, at the same time, to maintain the communication 
among the mobile agents. 

• Let sp  be a generic element of ( )j
mP , i.e., the set of the candidate sampling points for 

the vehicle j, and let us recursively define  
 

( )
( )

( )
1 1min

j
z m

j s sz j z
p P

f p c f p
+ +

∈

 = +      (6) 

 

as the minimum const related to the choice of  ( )j
sp  as a new measurement point for the 

j-th vehicle, where szc  is an element of the cost matrix 1j

jC + . 
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The cost function is evaluated for each feasible sampling point of every node, beginning 

from the last node E, ( ) 0f E = , and going back until the node S. The virtual nodes S and E do 

not contribute to the cost.  
 

C.  Distributed dynamic programming: forward phase. 

 
The minimum-cost path from S to E indicates the optimal sequence of the next sampling 

points for the AUV team, with respect to the cost function defined by equations 4 and 5. 
Starting from the virtual node S, the sampling point for the first vehicle is chosen as the first 
step of the minimum-cost path; then the (j-1)-th vehicle sends the coordinate of the 
measurement point to the j-th vehicle; the procedure is then iterated along the serial structure 
until the last mobile agents of the network receives the coordinate of its sampling point from 
the (n-1)-th vehicle. 
 

D.  Moving toward the sampling points 

After the forward phase has been completed, all the vehicles move toward their next 
sampling point, perform and share their measurements, update the information set I and the 
estimate of the oceanographic quantity θ. The exploration ends when the equation 2 is 
satisfied over the whole experimental area. In the next section a particular application of the 
adaptive sampling will be described through simulative results. 

 

IV. SIMULATION RESULTS 

The algorithm described in the previous section has been tested in a simulative scenario 
where the oceanographic data are field data from past oceanographic cruises. The map to be 
estimated is the ocean temperature in a shallow water region of 70m depth and 5x5 km width, 
characterized by a warmer water mass at the centre of the area. Three cooperating vehicles are 
supposed to perform the mission and it is assumed that the vehicles are equipped with a TD 
(Temperature Depth) probe, sampling the water column at one sample per meter at each 
required ),( yx position and a network device that allows communication between two vehicles, 

if their distance is lower than 1 Km. Empirical Orthogonal Functions (EOFs) are used to code 
the vertical temperature profile, as commonly done in oceanography.  

In figure 2a the behaviour of the team during the exploration is shown: even though eq.5 
aims to spread the vehicles over the region, eqs. 4 and 6 constraint them to move in team, in 
order to keep the network links. Figure 2b shows the paths followed by the three AUVs and 
the location of the sampling points: a higher number of measurements is taken where the 
variability of the temperature field is greater, i.e., where the temperature gradient is higher. In 
figure 3a and 3b are depicted the estimated temperature field at 25m depth and the related 
approximation error, respectively. 

V. CONCLUSION 

An algorithm for adaptive on-line planning of oceanographic missions to be performed in 
cooperation by a team of AUVs has been presented. Two mission goals have been considered: 
the main one is expressed in terms of accuracy in the reconstruction of the environmental field 
to be sampled, the second takes in to account the need of maintaining the network links 
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between the vehicles. Adaptive cooperative behaviour is achieved by the team in terms of 
local evaluation of the sampled field smoothness, and selection of the next sampling point in 
order to reach the desired accuracy and satisfy the network constraints; smoothness evaluation 
and accuracy estimation have been proposed in terms of analytical formulation related to field 
estimation by RBFs, while a distributed dynamic programming formulation has been proposed 
to satisfy the second requirement.   
Current work is progressing toward the extension of this approach to the case of a generic 
articulated communication chain structure, to the case in which ordering of the vehicles may 
be interchanged, and to the investigation of the degradation of performance when connectivity 
is lost: note that even in presence of loss of connectivity, for instance in one intermediate 
node, the two resulting chains can still proceed to apply the on-line planning algorithm, 
although with a limited information set updates.  

 

  
     (a)          (b) 
 
Fig. 2. (a) Paths in the mission area during the exploration. The vehicles adapt their exploring radius to guarantee 
the accuracy on the reconstruction of the environmental field, while they move in formation in order to keep the 
network links. (b) Paths in the mission area and measuring points selected by the vehicles during the exploration. 

 

 
            (a)       (b) 

Fig.3. (a) Estimated temperature field at 25m depth. (b) Approximation error at 25m depth. 
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