11 research outputs found

    SIX3 and SIX6 interact with GEMININ via C-terminal regions

    Get PDF
    The histoarchitecture and function of eye and forebrain depend on a well-controlled balance between cell proliferation and differentiation. For example, the binding of the cell cycle regulator GEMININ to CDT1, which is a part of the pre-replication complex, promotes cell differentiation. Homeodomain transcription factors SIX3 and SIX6 also interact with GEMININ of which SIX3-GEMININ interaction promotes cell proliferation, whereas the nature of SIX6-GEMININ interaction has not been studied to date. We investigated SIX3/SIX6 and GEMININ interactions using bimolecular fluorescence complementation, surface plasmon resonance and isothermal titration calorimetry. Interactions between SIX3/SIX6 and GEMININ were detected in mammalian cells in culture. The presence of the C-terminal regions of SIX3 and SIX6 proteins, but not their SIX domains or homeodomains as previously thought, were required for interaction with GEMININ. Interestingly, the disordered C- and N- terminal regions of GEMININ were involved in binding to SIX3/SIX6. The coiled-coil region of GEMININ, which is the known protein-binding domain and also interacts with CDT1, was not involved in GEMININ-SIX3/SIX6 interaction. Using SPR and ITC, SIX3 bound GEMININ with a micromolar affinity and the binding stoichiometry was 1:2 (SIX3 - GEMININ). The present study gives new insights into the binding properties of SIX proteins, especially the role of their variable and disordered C-terminal regions.publishedVersio

    Binding Specificity of ASHH2 CW Domain Toward H3K4me1 Ligand Is Coupled to Its Structural Stability Through Its α1-Helix

    Get PDF
    The CW domain binds to histone tail modifications found in different protein families involved in epigenetic regulation and chromatin remodeling. CW domains recognize the methylation state of the fourth lysine on histone 3 and could, therefore, be viewed as a reader of epigenetic information. The specificity toward different methylation states such as me1, me2, or me3 depends on the particular CW subtype. For example, the CW domain of ASHH2 methyltransferase binds preferentially to H3K4me1, and MORC3 binds to both H3K4me2 and me3 modifications, while ZCWPW1 is more specific to H3K4me3. The structural basis for these preferential bindings is not well understood, and recent research suggests that a more complete picture will emerge if dynamical and energetic assessments are included in the analysis of interactions. This study uses fold assessment by NMR in combination with mutagenesis, ITC affinity measurements, and thermal denaturation studies to investigate possible couplings between ASHH2 CW selectivity toward H3K4me1 and the stabilization of the domain and loops implicated in binding. The key elements of the binding site—the two tryptophans and the α1-helix form and maintain the binding pocket— were perturbed by mutagenesis and investigated. Results show that the α1-helix maintains the overall stability of the fold via the I915 and L919 residues and that the correct binding consolidates the loops designated as η1 and η3, as well as the C-terminal. This consolidation is incomplete for H3K4me3 binding to CW, which experiences a decrease in overall thermal stability on binding. Loop mutations not directly involved in the binding site, nonetheless, affect the equilibrium positions of the key residues.publishedVersio

    Cholesterol-containing lipid nanodiscs promote an α-synuclein binding mode that accelerates oligomerization

    Get PDF
    Dysregulation of the biosynthesis of cholesterol and other lipids has been implicated in many neurological diseases, including Parkinson's disease. Misfolding of α-synuclein (α-Syn), the main actor in Parkinson's disease, is associated with changes in a lipid environment. However, the exact molecular mechanisms underlying cholesterol effect on α-Syn binding to lipids as well as α-Syn oligomerization and fibrillation remain elusive, as does the relative importance of cholesterol compared to other factors. We probed the interactions and fibrillation behaviour of α-Syn using styrene–maleic acid nanodiscs, containing zwitterionic and anionic lipid model systems with and without cholesterol. Surface plasmon resonance and thioflavin T fluorescence assays were employed to monitor α-Syn binding, as well as fibrillation in the absence and presence of membrane models. 1H-15N-correlated NMR was used to monitor the fold of α-Syn in response to nanodisc binding, determining individual residue apparent affinities for the nanodisc-contained bilayers. The addition of cholesterol inhibited α-Syn interaction with lipid bilayers and, however, significantly promoted α-Syn fibrillation, with a more than a 20-fold reduction of lag times before fibrillation onset. When α-Syn bilayer interactions were analysed at an individual residue level by solution-state NMR, we observed two different effects of cholesterol. In nanodiscs made of DOPC, the addition of cholesterol modulated the NAC part of α-Syn, leading to stronger interaction of this region with the lipid bilayer. In contrast, in the nanodiscs comprising DOPC, DOPE and DOPG, the NAC part was mostly unaffected by the presence of cholesterol, while the binding of the N and the C termini was both inhibited.publishedVersio

    Homeodomain transcription factors Six3 and Six6 have distinct protein binding characteristics

    No full text
    The goal of this study was to characterize Six3 and Six6 proteins interactions and to better understand their functions. The Six class proteins are found in a wide variety of animals ranging from primitive invertebrate species to mammals. They belong to the class of evolutionarily conserved homeodomain-containing transcription factors, which regulate the transcription process of key genes during animal development. Mammals contain 6 Six proteins divided into three groups (Six1/2, Six3/6, and Six4/5) while fish contain more Six proteins due to extra whole genome duplication events occurred in the teleost lineage. The proteins belonging to the Six3/Six6 group are crucial for early embryonic specification of forebrain and eyes and for retinal cell proliferation and neurogenesis. However, mechanistic aspects of their actions and the functional divergence in this group have not been studied well. Six3 proteins have been shown to act in forebrain and eye development both as transcriptional activators and repressors and to function as regulators of cell proliferation through interactions with other proteins such as the cell cycle inhibitor Geminin. Six6 proteins have been shown to be less involved in brain development and the implications of their interaction with Geminin have not been studied to date. In order to achieve the goal of this study, the interactions of human SIX3 and SIX6 proteins to GEMININ were investigated by docking analysis, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and bimolecular fluorescence complementation (BiFC). Docking analyses showed a different interphase for the SIX3-GEMININ complex as compared to the SIX6-GEMININ complex. To verify these results, SPR was used. We observed a selective binding of the SIX domain of SIX3 (SIX3SD) relative to the full-length SIX3 protein, implying that SIX3SD is the main structure involved in SIX3 binding to GEMININ. Furthermore, SIX3SD showed a 10-fold higher binding affinity to GEMININ compared with the SIX domain of SIX6 (SIX6SD). ITC measurements of SIX3-GEMININ interaction showed a binding ratio SIX3 to GEMININ of 1:2 and revealed, in addition, that the interaction does not occur through the coiled-coil region of GEMININ. The interaction of full-length SIX3 and SIX6 proteins to GEMININ was confirmed through a strong fluorescence signal by means of BiFC in mammalian cells. Conversely, the BiFC signal was very low for SIX3SD or SIX6SD, implying a lack of interaction of the SIX domains with GEMININ in living cells. The zebrafish Six3 proteins Six3a and Six3b have not been characterized at the protein level although previous studies have shown spatiotemporal differences in mRNA expression patterns. We compared the predicted 3D-structures of Six3a and Six3b and their electrostatic maps and detected differences both in predicted structures and in the charge distributions between these two paralogous. Moreover, electrophoretic mobility shift assay (EMSA) showed that the full-length Six3b protein does not bind to the Six3a DNA recognition sequence. The binding affinity of Six3a and Six3b to Geminin was further measured by SPR. The SPR measurements showed that Six3b has a 3-fold higher affinity for Geminin than Six3a. In addition, the formation of strong heterodimer between Six3a and Six3b was detected in SPR. The BiFC assay in mammalian cells confirmed SPR binding results. Moreover, BiFC revealed that Six3b formed homodimers, whereas Six3a did not. Subcellular localization patterns for these two paralogous Six3 proteins were found to be different. Six3a was localized more to nucleus and nucleoli-like structures, whereas Six3b was primarily found in the cytoplasm, especially in Golgi-like structures. As a concluding remark, the results presented in this study show that, although Six3 and Six6 proteins share very high sequence identities and may assume similar structures, they have different abilities in protein interactions and hence may assume different cellular functions

    SIX3 and SIX6 interact with GEMININ via C-terminal regions

    No full text
    The histoarchitecture and function of eye and forebrain depend on a well-controlled balance between cell proliferation and differentiation. For example, the binding of the cell cycle regulator GEMININ to CDT1, which is a part of the pre-replication complex, promotes cell differentiation. Homeodomain transcription factors SIX3 and SIX6 also interact with GEMININ of which SIX3-GEMININ interaction promotes cell proliferation, whereas the nature of SIX6-GEMININ interaction has not been studied to date. We investigated SIX3/SIX6 and GEMININ interactions using bimolecular fluorescence complementation, surface plasmon resonance and isothermal titration calorimetry. Interactions between SIX3/SIX6 and GEMININ were detected in mammalian cells in culture. The presence of the C-terminal regions of SIX3 and SIX6 proteins, but not their SIX domains or homeodomains as previously thought, were required for interaction with GEMININ. Interestingly, the disordered C- and N- terminal regions of GEMININ were involved in binding to SIX3/SIX6. The coiled-coil region of GEMININ, which is the known protein-binding domain and also interacts with CDT1, was not involved in GEMININ-SIX3/SIX6 interaction. Using SPR and ITC, SIX3 bound GEMININ with a micromolar affinity and the binding stoichiometry was 1:2 (SIX3 - GEMININ). The present study gives new insights into the binding properties of SIX proteins, especially the role of their variable and disordered C-terminal regions

    A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    Get PDF
    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1

    Binding Specificity of ASHH2 CW Domain Toward H3K4me1 Ligand Is Coupled to Its Structural Stability Through Its α1-Helix

    No full text
    The CW domain binds to histone tail modifications found in different protein families involved in epigenetic regulation and chromatin remodeling. CW domains recognize the methylation state of the fourth lysine on histone 3 and could, therefore, be viewed as a reader of epigenetic information. The specificity toward different methylation states such as me1, me2, or me3 depends on the particular CW subtype. For example, the CW domain of ASHH2 methyltransferase binds preferentially to H3K4me1, and MORC3 binds to both H3K4me2 and me3 modifications, while ZCWPW1 is more specific to H3K4me3. The structural basis for these preferential bindings is not well understood, and recent research suggests that a more complete picture will emerge if dynamical and energetic assessments are included in the analysis of interactions. This study uses fold assessment by NMR in combination with mutagenesis, ITC affinity measurements, and thermal denaturation studies to investigate possible couplings between ASHH2 CW selectivity toward H3K4me1 and the stabilization of the domain and loops implicated in binding. The key elements of the binding site—the two tryptophans and the α1-helix form and maintain the binding pocket— were perturbed by mutagenesis and investigated. Results show that the α1-helix maintains the overall stability of the fold via the I915 and L919 residues and that the correct binding consolidates the loops designated as η1 and η3, as well as the C-terminal. This consolidation is incomplete for H3K4me3 binding to CW, which experiences a decrease in overall thermal stability on binding. Loop mutations not directly involved in the binding site, nonetheless, affect the equilibrium positions of the key residues

    Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins

    Get PDF
    Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus

    Nuclear upregulation of class I phosphoinositide 3-kinase p110β correlates with high 47S rRNA levels in cancer cells

    No full text
    The class I phosphoinositide 3-kinase (PI3K) catalytic subunits p110α and p110β are ubiquitously expressed but differently targeted in tumours. In cancer, PIK3CB (encoding p110β) is seldom mutated compared with PIK3CA (encoding p110α) but can contribute to tumorigenesis in certain PTEN-deficient tumours. The underlying molecular mechanisms are, however, unclear. We have previously reported that p110β is highly expressed in endometrial cancer (EC) cell lines and at the mRNA level in primary patient tumours. Here, we show that p110β protein levels are high in both the cytoplasmic and nuclear compartments in EC cells. Moreover, high nuclear:cytoplasmic staining ratios were detected in high-grade primary tumours. High levels of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] were measured in the nucleus of EC cells, and pharmacological and genetic approaches showed that its production was partly dependent upon p110β activity. Using immunofluorescence staining, p110β and PtdIns(3,4,5)P3 were localised in the nucleolus, which correlated with high levels of 47S pre-rRNA. p110β inhibition led to a decrease in both 47S rRNA levels and cell proliferation. In conclusion, these results present a nucleolar role for p110β that may contribute to tumorigenesis in EC
    corecore