242 research outputs found

    AP-1 as a Regulator of MMP-13 in the Stromal Cell of Giant Cell Tumor of Bone

    Get PDF
    Matrix-metalloproteinase-13 (MMP-13) has been shown to be an important protease in inflammatory and neoplastic conditions of the skeletal system. In particular, the stromal cells of giant cell tumor of bone (GCT) express very high levels of MMP-13 in response to the cytokine-rich environment of the tumor. We have previously shown that MMP-13 expression in these cells is regulated, at least in part, by the RUNX2 transcription factor. In the current study, we identify the expression of the c-Fos and c-Jun elements of the AP-1 transcription factor in these cells by protein screening assays and real-time PCR. We then used siRNA gene knockdown to determine that these elements, in particular c-Jun, are upstream regulators of MMP-13 expression and activity in GCT stromal cells. We conclude that there was no synergy found between RUNX2 and AP-1 in the regulation of the MMP13 expression and that these transcription factors may be independently regulated in these cells

    Incidence and Severity of Lymphoedema following Limb Salvage of Extremity Soft Tissue Sarcoma

    Get PDF
    Background and Purpose. Lymphoedema is a serious complication following limb salvage for extremity soft tissue sarcomas (STSs) for which little is known. We aimed to evaluate its incidence, its, severity and its associated risk factors. Material and Method. Patient and tumor characteristics, treatment modalities and complications and functional outcomes (MSTS 1987, TESS), and lymphoedema severity (Stern) were all collected from prospective databases. Charts were retrospectively abstracted for BMI and comorbidities. Results. There were 289 patients (158 males). Mean age was 53 (16–88). Followup ranged between 12 and 60 months with an average of 35 and a median of 36 months. Mean BMI was 27.4 (15.8–52.1). 72% had lower extremity tumors and 38% upper extremity. Mean tumor size was 8.1 cm (1.0–35.6 cm). 27% had no adjuvant radiation, 62% had 50 Gy, and 11% received 66 Gy. The incidence of lymphoedema was 28.8% (206 none, 58 mild, 22 moderate, 3 severe, and 0 very severe). Mean MSTS score was 32 (11–35) and TESS was 89.4 (32.4–100). Radiation dose was significantly correlated with tumor size > 5 cm (P = 0.0001) and TESS score (P = 0.001), but not MSTS score (P = 0.090). Only tumor size > 5 cm and depth were found to be independent predictors of significant lymphoedema. Conclusion. Nine percent of STS patients in our cohort developed significant (grade ≥ 2) lymphoedema. Tumor size > 5 cm and deep tumors were associated with an increased occurrence of lymphoedema but not radiation dosage

    Multiple Soft Tissue Sarcomas in a Single Patient:An International Multicentre Review

    Get PDF
    Developing multiple soft tissue sarcomas (STSs) is a rare process, sparsely reported in the literature to date. Little is known about the pattern of disease development or outcomes in these patients. Patients were identified from three tertiary orthopaedic oncology centres in Canada and the UK. Patients who developed multiple extremity STSs were collated retrospectively from prospective oncology databases. A literature review using MEDLINE was also performed. Six patients were identified in the case series from these three institutions, and five studies were identified from the literature review. Overall, 17 patients were identified with a median age of 51 years (range: 19 to 77). The prevalence of this manifestation in STS patients is 1 in 1225. The median disease-free interval between diagnoses was 2.3 years (range: 0 to 19 years). Most patients developed the secondary STS in a metachronous pattern, the remaining, synchronously. The median survival after the first sarcoma was 6 years, and it was 1.6 years after the second sarcoma. The 5-year overall survival rate was 83.3% and 50% following the first and second STS diagnoses, respectively. A diagnosis of two STSs does not confer a worse prognosis than the diagnosis of a single STS. Developing a second STS is a rare event with no identifiable histological pattern of occurrence. Presentation in a metachronous pattern is more common. A high degree of vigilance is required in patients with a previous STS both to detect both local recurrence and to identify new masses remote from the previous STS site. Acquiring an early histological diagnosis should be attempted

    The transition between stochastic and deterministic behavior in an excitable gene circuit

    Get PDF
    We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model, the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We analyze how that behavior depends on the gene copy number and find very slow convergence to the large number limit near the bifurcation point. The implications for understanding the dynamics of gene circuits and other birth-death dynamical systems with small numbers of constituents are discussed.Comment: PLoS ONE: Research Article, published 11 Apr 201

    PTHrP Induces Autocrine/Paracrine Proliferation of Bone Tumor Cells through Inhibition of Apoptosis

    Get PDF
    Giant Cell Tumor of Bone (GCT) is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates and metastatic potential. Previous work in our lab has shown that the neoplastic cell of GCT is a proliferating pre-osteoblastic stromal cell in which the transcription factor Runx2 plays a role in regulating protein expression. One of the proteins expressed by these cells is parathryroid hormone-related protein (PTHrP). The objectives of this study were to determine the role played by PTHrP in GCT of bone with a focus on cell proliferation and apoptosis. Primary stromal cell cultures from 5 patients with GCT of bone and one lung metastsis were used for cell-based experiments. Control cell lines included a renal cell carcinoma (RCC) cell line and a human fetal osteoblast cell line. Cells were exposed to optimized concentrations of a PTHrP neutralizing antibody and were analyzed with the use of cell proliferation and apoptosis assays including mitochondrial dehydrogenase assays, crystal violet assays, APO-1 ELISAs, caspase activity assays, flow cytometry and immunofluorescent immunohistochemistry. Neutralization of PTHrP in the cell environment inhibited cell proliferation in a consistent manner and induced apoptosis in the GCT stromal cells, with the exception of those obtained from a lung metastasis. Cell cycle progression was not significantly affected by PTHrP neutralization. These findings indicate that PTHrP plays an autocrine/paracrine neoplastic role in GCT by allowing the proliferating stromal cells to evade apoptosis, possibly through non-traditional caspase-independent pathways. Thus PTHrP neutralizing immunotherapy is an intriguing potential therapeutic strategy for this tumor

    Quantitative scintigraphy with deconvolutional analysis for the dynamic measurement of hepatic function

    Full text link
    A mathematical technique known as deconvolutional analysis was used to provide a critical and previously missing element in the computations required to quantitate hepatic function scintigraphically. This computer-assisted technique allowed for the determination of the time required, in minutes, of a labeled bilirubin analog (99mTc-disofenin) to enter the liver via blood and exit via bile. This interval was referred to as the mean transit time (MTT). The critical process provided for by deconvolution is the mathematical simulation of a bolus injection of tracer directly into the afferent blood supply of the liver. The raw data required for this simulation are obtained from the intravenous injection of labeled disofenin, a member of the HIDA family of radiopharmaceuticals. In this study, we perform experiments which document that the simulation process itself is accurate. We then calculate the MTT under a variety of experimental conditions involving progressive hepatic ischemia/reperfusion injury and correlate these results with the results of simultaneously performed BSP determinations and hepatic histology. The experimental group with the most pronounced histologic findings (necrosis, vacuolization, disorganization of hepatic cords) also have the most prolonged MTT and BSP half-life. However, both quantitative imaging and BSP testing are able to identify milder degrees of hepatic ischemic injury not reflected in the histologic evaluation. Quantitative imaging with deconvolutional analysis is a technique easily adaptable to the standard nuclear medicine minicomputer. It provides rapid results and appears to be a sensitive monitor of hepatic functional disturbances resulting from ischemia and reperfusion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26699/1/0000247.pd

    The SPARC Toroidal Field Model Coil Program

    Get PDF

    The SPARC Toroidal Field Model Coil Program

    Full text link
    The SPARC Toroidal Field Model Coil (TFMC) Program was a three-year effort between 2018 and 2021 that developed novel Rare Earth Yttrium Barium Copper Oxide (REBCO) superconductor technologies and then successfully utilized these technologies to design, build, and test a first-in-class, high-field (~20 T), representative-scale (~3 m) superconducting toroidal field coil. With the principal objective of demonstrating mature, large-scale, REBCO magnets, the project was executed jointly by the MIT Plasma Science and Fusion Center (PSFC) and Commonwealth Fusion Systems (CFS). The TFMC achieved its programmatic goal of experimentally demonstrating a large-scale high-field REBCO magnet, achieving 20.1 T peak field-on-conductor with 40.5 kA of terminal current, 815 kN/m of Lorentz loading on the REBCO stacks, and almost 1 GPa of mechanical stress accommodated by the structural case. Fifteen internal demountable pancake-to-pancake joints operated in the 0.5 to 2.0 nOhm range at 20 K and in magnetic fields up to 12 T. The DC and AC electromagnetic performance of the magnet, predicted by new advances in high-fidelity computational models, was confirmed in two test campaigns while the massively parallel, single-pass, pressure-vessel style coolant scheme capable of large heat removal was validated. The REBCO current lead and feeder system was experimentally qualified up to 50 kA, and the crycooler based cryogenic system provided 600 W of cooling power at 20 K with mass flow rates up to 70 g/s at a maximum design pressure of 20 bar-a for the test campaigns. Finally, the feasibility of using passive, self-protection against a quench in a fusion-scale NI TF coil was experimentally assessed with an intentional open-circuit quench at 31.5 kA terminal current.Comment: 17 pages 9 figures, overview paper and the first of a six-part series of papers covering the TFMC Progra

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle θ\theta of about 11^\circ is well-described by the expression \sigma/E = ((46.5 \pm 6.0)\%/\sqrt{E} +(1.2 \pm 0.3)\%) \oplus (3.2 \pm 0.4)~\mbox{GeV}/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube

    Get PDF
    Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses ≳1014^{14} M⊙ and redshifts between 0.01 and ∼1 detected by the Planck mission via the Sunyaev–Zel’dovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (≳1014^{14} M⊙) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken E−2.5^{2.5} power-law spectrum
    corecore