109 research outputs found
Solar neutrinos, helioseismology and the solar internal dynamics
Neutrinos are fundamental particles ubiquitous in the Universe. Their
properties remain elusive despite more than 50 years of intense research
activity. In this review we remind the reader of the noticeable properties of
these particles and of the stakes of the solar neutrino puzzle. The Standard
Solar Model triggered persistent efforts in fundamental Physics to predict the
solar neutrino fluxes, and its constantly evolving predictions have been
regularly compared to the detected neutrino signals. Anticipating that this
standard model could not reproduce the internal solar dynamics, a SEismic Solar
Model was developed which enriched theoretical neutrino flux predictions with
in situ observation of acoustic waves propagating in the Sun. This review
reminds the historical steps, from the pioneering Homestake detection, the
GALLEX- SAGE captures of the first pp neutrinos and emphasizes the importance
of the Superkamiokande and SNO detectors to demonstrate that the solar-emitted
electronic neutrinos are partially transformed into other neutrino flavors
before reaching the Earth. The success of BOREXINO in detecting the 7 Be
neutrino signal justifies the building of a new generation of detectors to
measure the entire solar neutrino spectrum. A coherent picture emerged from
neutrino physics and helioseismology. Today, new paradigms take shape:
determining the masses of neutrinos and the research on the Sun is focusing on
the dynamical aspects and on signature of dark matter. The third part of the
review is dedicated to this prospect. The understanding of the crucial role of
both rotation and magnetism in solar physics benefit from SoHO, SDO, and PICARD
space observations. For now, the particle and stellar challenges seem
decoupled, but this is only a superficial appearance. The development of
asteroseismology shows the far-reaching impact of Neutrino and Stellar
Astronomy.Comment: 60 pages, 12 figures Invited review in press in Report on Progress in
Physic
Seismic sensitivity to sub-surface solar activity from 18 years of GOLF/SoHO observations
Solar activity has significantly changed over the last two Schwabe cycles.
After a long and deep minimum at the end of Cycle 23, the weaker activity of
Cycle 24 contrasts with the previous cycles. In this work, the response of the
solar acoustic oscillations to solar activity is used in order to provide
insights on the structural and magnetic changes in the sub-surface layers of
the Sun during this on-going unusual period of low activity. We analyze 18
years of continuous observations of the solar acoustic oscillations collected
by the Sun-as-a-star GOLF instrument onboard the SoHO spacecraft. From the
fitted mode frequencies, the temporal variability of the frequency shifts of
the radial, dipolar, and quadrupolar modes are studied for different frequency
ranges which are sensitive to different layers in the solar sub-surface
interior. The low-frequency modes show nearly unchanged frequency shifts
between Cycles 23 and 24, with a time evolving signature of the quasi-biennial
oscillation, which is particularly visible for the quadrupole component
revealing the presence of a complex magnetic structure. The modes at higher
frequencies show frequency shifts 30% smaller during Cycle~24, which is in
agreement with the decrease observed in the surface activity between Cycles 23
and 24. The analysis of 18 years of GOLF oscillations indicates that the
structural and magnetic changes responsible for the frequency shifts remained
comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below
1400 km as revealed by the low-frequency modes. The frequency shifts of the
higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is
magnetically weaker in the upper layers of Sun.Comment: Accepted for publication in A&
Interpreting the Atmospheric Neutrino Anomaly
We suggest that the atmospheric neutrino anomaly observed in the
Super-Kamiokande (and other) experiments results from the combined effects of
muon-neutrino to tau-neutrino oscillations with a Delta m^2 value of
approximately 0.4 eV^2 and oscillations between muon neutrinos and electron
neutrinos (and vice-versa) with 0.0001 < Delta m^2 < 0.001 eV^2. With an
appropriate choice of a three-neutrino mixing matrix, such a hypothesis is
consistent with essentially all neutrino observations.Comment: 12 pages, 2 eps figures, Latex2e, elsart style, submitted to Physics
Letters B --REV2-- Updated figure 1 and added figure 2: Super-K single R dat
Variations of the solar granulation motions with height using the GOLF/SoHO experiment
Below 1 mHz, the power spectrum of helioseismic velocity measurements is
dominated by the spectrum of convective motions (granulation and
supergranulation) making it difficult to detect the low-order acoustic modes
and the gravity modes. We want to better understand the behavior of solar
granulation as a function of the observing height in the solar atmosphere and
with magnetic activity during solar cycle 23. We analyze the Power Spectral
Density (PSD) of eleven years of GOLF/SOHO velocity-time series using a
Harvey-type model to characterize the properties of the convective motions in
the solar oscillation power spectrum. We study then the evolution of the
granulation with the altitude in the solar atmosphere and with the solar
activity. First, we show that the traditional use of a lorentzian profile to
fit the envelope of the p modes is not well suitable for GOLF data. Indeed, to
properly model the solar spectrum, we need a second lorentzian profile. Second,
we show that the granulation clearly evolves with the height in the photosphere
but does not present any significant variation with the activity cycle.Comment: Paper accepted in A&A. 7 pages, 4 figures, 2 table
Probing the internal solar magnetic field through g-modes
The observation of g-mode candidates by the SoHO mission opens the
possibility of probing the internal structure of the solar radiative zone (RZ)
and the solar core more directly than possible via the use of the p-mode
helioseismology data. We study the effect of rotation and RZ magnetic fields on
g-mode frequencies. Using a self-consistent static MHD magnetic field model we
show that a 1% g-mode frequency shift with respect to the Solar Seismic Model
(SSeM) prediction, currently hinted in the GOLF data, can be obtained for
magnetic fields as low as 300 kG, for current measured modes of radial order
n=-20. On the other hand, we also argue that a similar shift for the case of
the low order g-mode candidate (l=2, n=-3) frequencies can not result from
rotation effects nor from central magnetic fields, unless these exceed 8 MG.Comment: 6 pages, 2 figures; final version to appear in MNRA
Procyon-A and Eta-Bootis: Observational Frequencies Analyzed by the Local-Wave Formalism
In the present analysis of Procyon-A and Eta-Bootis, we use the local-wave
formalism which, despite its lack of precision inherent to any semi-analytical
method, uses directly the model profile without any modification when
calculating the acoustic mode eigenfrequencies. These two solar-like stars
present steep variations toward the center due to the convective core
stratification, and toward the surface due to the very thin convective zone.
Based on different boundary conditions, the frequencies obtained with this
formalism are different from that of the classical numerical calculation. We
point out that (1) the frequencies calculated with the local-wave formalism
seem to agree better with observational ones. All the frequencies detected with
a good confident level including those classified as 'noise' find an
identification, (2) some frequencies can be clearly identified here as
indications of the core limit.Comment: SOHO 18 / GONG 2006 / HELAS I Meetin
- …