36 research outputs found

    Thrombolysis in Stroke With Unknown Onset Based on Non-Contrast Computerized Tomography (TRUST CT).

    Get PDF
    Background Intravenous thrombolysis (IVT) in wake-up stroke (WUS) or stroke with unknown onset (SUO) has been recently proven to be safe and effective using advanced neuroimaging (magnetic resonance imaging or computerized tomography-perfusion) for patient selection. However, in most of the thrombolyzing centers advanced neuroimaging is not instantly available. We hypothesize that pragmatic non-contrast computed tomography-based IVT in WUS/SUO may be feasible and safe. Methods and Results TRUST-CT (Thrombolysis in Stroke With Unknown Onset Based on Non-Contrast Computerized Tomography) is an international multicenter registry-based study. WUS/SUO patients undergoing non-contrast computed tomography-based IVT with National Institute of Health Stroke Scale ≄4 and initial Alberta Stroke Program Early Computerized Tomography score ≄7 were included and compared with propensity score matched non-thrombolyzed WUS/SUO controls. Primary end point was the incidence of symptomatic intracranial hemorrhage; secondary end points included 24-hour National Institute of Health Stroke Scale improvement of ≄4 and modified Rankin Scale at 90 days. One hundred and seventeen WUS/SUO patients treated with non-contrast computed tomography-based IVT were included. As compared with 112 controls, the median admission National Institute of Health Stroke Scale was 10 and the median Alberta Stroke Program Early Computerized Tomography score was 10 in both groups. Four (3.4%) IVT patients and one control patient (0.9%) suffered symptomatic intracranial hemorrhage (adjusted odds ratio 7.9, 95% CI 0.65-96, P=0.1). A decrease of ≄4 National Institute of Health Stroke Scale points was observed in 67 (57.3%) of IVT patients as compared with 25 (22.3%) in controls (adjusted odds ratio 5.8, CI 3.0-11.2, P<0.001). A months, 39 (33.3%) IVT patients reached a modified Rankin Scale score of 0 or 1 versus 23 (20.5%) controls (adjusted odds ratio 1.94, CI 1.0-3.76, P=0.05). Conclusions Non-contrast computed tomography-based thrombolysis in WUS/SUO seems feasible and safe and may be effective. Randomized prospective comparisons are warranted. Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT03634748

    Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage

    Get PDF
    Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes

    Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis

    Get PDF
    Supported by F. Hoffmann–La Roche

    Whole-blood red blood cell aggregometer for human and feline blood

    No full text
    corecore