45 research outputs found

    The Pattern Of Neurological Manifestations Of Tuberculosis Among Adult Sudanese Patients

    Get PDF
    Objective: To study the pattern of neurological manifestations of tuberculosis among adult Sudanese tuberculous patients seen at El-Shaab Teaching Hospital (Sudan). Methods: This study was performed on 179 Sudanese patients with tuberculosis admitted at El-Shaab Teaching Hospital during the period from May 2005 to January 2006. Demographic and clinical data were obtained. Investigations including CXR, sputum for acid alcohol fast bacilli [AAFB], Mantoux test, complete haemogram were done. Screening for HIV, NC Study, EMG, CT, MRI of the brain or spinal cord were performed when indicated. Results: Fifty seven out of 179 tuberculous patients had neurological complications. 22 presented with Pott\'s paraplegia, 18 with peripheral neuropathy, six had tubercloma, three with tuberculous meningitis, three had quadriplegia, two had hemiplegia, two had proximal myopathy and one had multiple cranial nerves palsies CONCULSION: The study revealed high incidence of Potts paraplegia and peripheral neuropathy, this is most probably due to late presentation. Keywords: Pott\'s paraplegia, peripheral neuropathy, tubercloma, tuberculous meningitis, quadriplegia, hemiplegia, proximal myopathy Sudan Journal of Medical Sciences Vol. 3 (3) 2008: pp. 221-22

    Compressive Response of Polycrystalline NiCoMnGa High-Temperature Meta-magnetic Shape Memory Alloys

    Get PDF
    The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect

    Financing of International Collective Action for Epidemic and Pandemic Preparedness.

    Get PDF
    The global pandemic response has typically followed cycles of panic followed by neglect. We are now, once again, in a phase of neglect, leaving the world highly vulnerable to massive loss of life and economic shocks from natural or human-made epidemics and pandemics. Quantifying the size of the losses caused by large-scale outbreaks is challenging because the epidemiological and economic research in this field is still at an early stage. Research on the 1918 influenza H1N1 pandemic and recent epidemics and pandemics has shown a range of estimated losses (panel).1; 2; 3; 4; 5; 6 ; 7 A limitation in assessing the economic costs of outbreaks is that they only capture the impact on income. Fan and colleagues8 recently addressed this limitation by estimating the “inclusive” cost of pandemics: the sum of the cost in lost income and a dollar valuation of the cost of early death. They found that for Ebola and severe acute respiratory syndrome (SARS), the true (“inclusive”) costs are two to three times the income loss. For extremely serious pandemics such as that of influenza in 1918, the inclusive costs are over five times income loss. The inclusive costs of the next severe influenza pandemic could be US570billioneachyearor07570 billion each year or 0·7% of global income (range 0·4–1·0%)8—an economic threat similar to that of global warming, which is expected to cost 0·2–2·0% of global income annually. Given the magnitude of the threat, we call for scaled-up financing of international collective action for epidemic and pandemic preparedness. Two planks of preparedness must be strengthened. The first is public health capacity—including human and animal disease surveillance—as a first line of defence.9 Animal surveillance is important since most emerging infectious diseases with outbreak potential originate in animals. Rigorous external assessment of national capabilities is critical; WHO developed the Joint External Evaluation (JEE) tool specifically for this purpose.10 Financing for this first plank will largely be through domestic resources, but supplementary donor financing to low-income, high-risk countries is also needed. The second plank is financing global efforts to accelerate research and development (R&D) of vaccines, drugs, and diagnostics for outbreak control, and to strengthen the global and regional outbreak preparedness and response system. These two international collective action activities are underfunded.11 Medical countermeasures against many emerging infectious diseases are currently missing. We need greater investment in development of vaccines, therapeutics, and diagnostics to prevent potential outbreaks from becoming humanitarian crises. The new Coalition for Epidemic Preparedness Innovations (CEPI), which aims to mobilise 1 billion over 5 years, is developing vaccines against known emerging infectious diseases as well as platforms for rapid development of vaccines against outbreaks of unknown origin. The WHO R&D Blueprint for Action to Prevent Epidemics12 is a new mechanism for coordinating and prioritising the development of drugs and diagnostics for emerging infectious diseases. Consolidating and enhancing donor support for these new initiatives would be an efficient way to channel resources aimed at improving global outbreak preparedness and response. Crucial components of the global and regional system for outbreak control include surge capacity (eg, the ability to urgently deploy human resources); providing technical guidance to countries in the event of an outbreak; and establishing a coordinated, interlinked global, regional, and national surveillance system. These activities are the remit of several essential WHO financing envelopes that all face major funding shortfalls. The Contingency Fund for Emergencies finances surge outbreak response for up to 3 months. The fund has a capitalisation target of 100millionofflexiblevoluntarycontributions,whichneedstobereplenishedwithabout100 million of flexible voluntary contributions, which needs to be replenished with about 25–50 million annually, depending on the extent of the outbreak in any given year. However, as of April 30, 2017, only 3765millionhadbeencontributed,withanadditional37·65 million had been contributed, with an additional 4 million in pledges.13 The WHO Health Emergencies and Health Systems Preparedness Programmes face an annual shortfall of 225millioninfundingtheirepidemicandpandemicpreventionandcontrolactivities.14Previoushealthemergencieshaveshownthatitcantaketimetoorganiseglobalcollectiveactionandprovidefinancingtothenationalandlocallevel.Insuchsituations,aglobalmechanismshouldofferarapidinjectionofliquiditytoaffectedcountries.TheWorldBank2˘7sPandemicEmergencyFinancingFacility(PEF)isaproposedglobalinsurancemechanismforpandemicemergencies.15Itaimstoprovidesurgefundingforresponseeffortstohelprespondtorare,highburdendiseaseoutbreaks,preventingthemfrombecomingmoredeadlyandcostlypandemics.ThePEFcurrentlyproposesacoverageof225 million in funding their epidemic and pandemic prevention and control activities.14 Previous health emergencies have shown that it can take time to organise global collective action and provide financing to the national and local level. In such situations, a global mechanism should offer a rapid injection of liquidity to affected countries. The World Bank\u27s Pandemic Emergency Financing Facility (PEF) is a proposed global insurance mechanism for pandemic emergencies.15 It aims to provide surge funding for response efforts to help respond to rare, high-burden disease outbreaks, preventing them from becoming more deadly and costly pandemics. The PEF currently proposes a coverage of 500 million for the insurance window; increasing the current coverage will require additional donor commitments. In addition, the PEF has a $50–100 million replenishable cash window. As the world\u27s health ministers meet this month for the World Health Assembly, we propose five key ways to help prevent mortality and economic shocks from disease outbreaks. First, to accelerate development of new technologies to control outbreaks, donors should expand their financing for CEPI and support the WHO R&D Blueprint for Action to Prevent Epidemics. Second, funding gaps in the WHO Contingency Fund for Emergencies and the WHO Health Emergencies Programme should be urgently filled and the PEF should be fully financed. Third, all nations should support their own and other countries\u27 national preparedness efforts, including committing to the JEE process. Fourth, we believe it would be valuable to create and maintain a regional and country-level pandemic risk and preparedness index. This index could potentially be used as a way to review preparedness in International Monetary Fund article IV consultations (regular country reports by staff to its Board). Finally, we call for a new global effort to develop long-term national, regional, and global investment plans to create a world secure from the threat of devastation from outbreaks. This article summarises the recommendations of a workshop held at the National Academy of Medicine, Washington, DC, USA, co-hosted by the Center for Policy Impact in Global Health at Duke University, Durham, NC, USA and the Coalition for Epidemic Preparedness Innovations, Oslo, Norway. Participants\u27 travel and accommodation were supported by the Center for Policy Impact in Global Health. BO is a consultant to Metabiota, a private company engaged in infectious disease risk modelling and analytical services. In this capacity, he has led the development of an index measuring national capacity to respond to epidemic and pandemic disease outbreaks

    Sociodemographic variation in the use of chemotherapy and radiotherapy in patients with stage IV lung, oesophageal, stomach and pancreatic cancer: evidence from population-based data in England during 2013-2014.

    Get PDF
    BACKGROUND: Sociodemographic inequalities in cancer treatment have been generally described, but there is little evidence regarding patients with advanced cancer. Understanding variation in the management of these patients may provide insights into likely mechanisms leading to inequalities in survival. METHODS: We identified 50,232 patients with stage IV lung, oesophageal, pancreatic and stomach cancer from the English national cancer registry. A generalised linear model with a Poisson error structure was used to explore variation in radiotherapy and chemotherapy within 6 months from diagnosis by age, sex, deprivation, ethnicity, cancer site, comorbidity and, additionally, performance status. RESULTS: There was substantial variation by cancer site, large gradients by age, and non-trivial associations with comorbidity and deprivation. After full adjustment, more deprived patients were consistently least likely to be treated with chemotherapy alone or chemotherapy and radiotherapy combined compared with less deprived patients with equally advanced disease stage (treatment rate ratio: 0.82 95% CI (0.78, 0.87) for CT, 0.78 95% CI (0.71, 0.85) for CTRT p < 0.0001). CONCLUSIONS: There was marked variation in the management of patients with stage IV cancer. Routinely collected data could be used for surveillance across all cancers to help reduce treatment variation and optimise outcomes among patients with advanced cancer

    Dissection-independent production of Plasmodium sporozoites from whole mosquitoes

    Get PDF
    Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free -flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two-to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research grade sporozoites, which should impact delivery of a whole parasite based malaria vaccine at scale in the future.Host-parasite interactio

    Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins

    Get PDF
    The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic viruslike particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill &amp; Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials
    corecore