729 research outputs found
Entangled symmetric states of N qubits with all positive partial transpositions
From both theoretical and experimental points of view symmetric states
constitute an important class of multipartite states. Still, entanglement
properties of these states, in particular those with positive partial
transposition (PPT), lack a systematic study. Aiming at filling in this gap, we
have recently affirmatively answered the open question of existence of
four-qubit entangled symmetric states with positive partial transposition and
thoroughly characterized entanglement properties of such states [J. Tura et
al., Phys. Rev. A 85, 060302(R) (2012)] With the present contribution we
continue on characterizing PPT entangled symmetric states. On the one hand, we
present all the results of our previous work in a detailed way. On the other
hand, we generalize them to systems consisting of arbitrary number of qubits.
In particular, we provide criteria for separability of such states formulated
in terms of their ranks. Interestingly, for most of the cases, the symmetric
states are either separable or typically separable. Then, edge states in these
systems are studied, showing in particular that to characterize generic PPT
entangled states with four and five qubits, it is enough to study only those
that assume few (respectively, two and three) specific configurations of ranks.
Finally, we numerically search for extremal PPT entangled states in such
systems consisting of up to 23 qubits. One can clearly notice regularity behind
the ranks of such extremal states, and, in particular, for systems composed of
odd number of qubits we find a single configuration of ranks for which there
are extremal states.Comment: 16 pages, typos corrected, some other improvements, extension of
arXiv:1203.371
Nonlocality in many-body quantum systems detected with two-body correlators
Contemporary understanding of correlations in quantum many-body systems and
in quantum phase transitions is based to a large extent on the recent intensive
studies of entanglement in many-body systems. In contrast, much less is known
about the role of quantum nonlocality in these systems, mostly because the
available multipartite Bell inequalities involve high-order correlations among
many particles, which are hard to access theoretically, and even harder
experimentally. Standard, "theorist- and experimentalist-friendly" many-body
observables involve correlations among only few (one, two, rarely three...)
particles. Typically, there is no multipartite Bell inequality for this
scenario based on such low-order correlations. Recently, however, we have
succeeded in constructing multipartite Bell inequalities that involve two- and
one-body correlations only, and showed how they revealed the nonlocality in
many-body systems relevant for nuclear and atomic physics [Science 344, 1256
(2014)]. With the present contribution we continue our work on this problem. On
the one hand, we present a detailed derivation of the above Bell inequalities,
pertaining to permutation symmetry among the involved parties. On the other
hand, we present a couple of new results concerning such Bell inequalities.
First, we characterize their tightness. We then discuss maximal quantum
violations of these inequalities in the general case, and their scaling with
the number of parties. Moreover, we provide new classes of two-body Bell
inequalities which reveal nonlocality of the Dicke states---ground states of
physically relevant and experimentally realizable Hamiltonians. Finally, we
shortly discuss various scenarios for nonlocality detection in mesoscopic
systems of trapped ions or atoms, and by atoms trapped in the vicinity of
designed nanostructures.Comment: 46 pages (25.2 + appendices), 7 figure
Four-qubit entangled symmetric states with positive partial transpositions
We solve the open question of the existence of four-qubit entangled symmetric
states with positive partial transpositions (PPT states). We reach this goal
with two different approaches. First, we propose a
half-analytical-half-numerical method that allows to construct multipartite PPT
entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states.
Second, we adapt the algorithm allowing to search for extremal elements in the
convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum,
Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we
search for extremal four-qubit PPTESS and show that generically they have ranks
(5,7,8). Finally, we provide an exhaustive characterization of these states
with respect to their separability properties.Comment: 5+4 pages, improved version, title slightly modifie
Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63
Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression
One-pot synthesis of CdS nanoparticles in the channels of mesosructured silica films and monoliths
Cd(II)-modified mesoporous silica films and/or monoliths synthesized in one pot using a true liquid crystalline (TLC) approach have been reacted with H2S gas to produce CdS-modified mesostructured nanocomposite materials (Nano-CdS/meso-SiO2). During this process, both the TLC and the metallotropic liquid crystalline (MLC) mesophase of metal salt ([Cd(H 2O)4](NO3)2)-nonionic surfactant (CnH2n+1- (OCH2CH2)mOH, CnEOm) systems were collectively used to incorporate large quantities of metal ions into the mesoporous silica film and monoliths. The effect of the cadmium nitrate concentration on the formation and structure of the mesoporous silica has also been investigated. The results show that at low salt concentrations, the mesoporous silica is anisotropic (hexagonal); however, at high salt concentration, the structure is isotropic (cubic or disordered). The freshly prepared CdS nanoparticles are reactive toward the surface acids that form during the H2S treatment. These surface acids also promote the degradation of the CdS nanopaticles. However, the CdS particles in the mesopores can be stabilized by washing out the acid sides or aging the samples for a period of time before the H2S reaction. The optical absorption edge of the CdS nanoparticle in the pores is sensitive to the composition and structure of the host. In this context, the materials were characterized using FTIR, micro-Raman, UV-visible absorption spectroscopy, POM, TEM, and PXRD techniques
Recommended from our members
Evaluation of Small Steps Big Changes: report on attempt to apply cost-benefit analysis
This paper sets out our findings from an attempt to apply cost benefit analysis (CBA) to Small Steps Big Changes. CBA is a method that is used by economists to determine the effect that a project has on social welfare. It is based on assigning monetary values to relevant economic costs and benefits associated with a project and if the benefits outweigh the costs the project is deemed worthwhile. The application of such an approach to Small Steps Big Changes might appear to be a futile exercise. How do we possibly assign a monetary value to interventions that target pre-school children? This is clearly a difficult exercise but is nevertheless one that has been tackled elsewhere, most notably in the United States of America.
Before presenting the findings from an attempt to apply CBA to Small Steps Big Changes as part of the wider evaluation project, we briefly set out the principles of CBA and review the literature, both academic and non-academic, where CBA has been applied to pre-school interventions. A number of influential studies in the academic economics literature are based on the HighScope Perry Pre-School project in Michigan and the Carolina Abecedarian project in the USA. In the UK there are a small number of studies on publicly funded pre-school education initiatives. This literature review provides the basis for the approach that we intended to apply in the evaluation of Small Steps Big Changes. In particular the literature review highlights the nature of the benefits that we might expect to be generated and how it would be possible to generate monetary values for these, along with the findings from previous CBA studies.
We had then intended to present our findings for Small Steps Big Changes including, where possible, a breakdown of the results for constituent projects of Small Steps Big Changes. However as the evaluation proceeded it became apparent that this was not going to be possible. Instead we report on the challenges that were encountered so that these can be addressed in any future evaluation of this type of activity
Canine placenta histological findings and microvascular density: The histological basis of a negative neonatal outcome?
Placenta is essential for the development of the fetus, and its impaired function can lead to a negative outcome (i.e., neonatal mortality). In dogs, investigations on placenta histology and neonatal outcome in healthy bitches are lacking, and a contribution is provided in this study to emphasize the use of placenta histology in practice. Fifty-one placentas from 11 litters were collected during cesarean section, classified according to the litter size (large (L) or small (S)) and the outcome, this latter as healthy (Group 1) or dead within 7 days (Group 2). The placenta/puppy weight ratio (PPR) was calculated, and specimens were formalin-fixed and paraffin-wax embedded, and on the resulting histological slides, capillary density (CD) was quantified. Among necrosis, calcification, and intravascular leucocytes, only the presence of multifocal-confluent necrosis (significantly more frequent in Group 2) was associated with a higher risk of death within 7 days (odds ratio = 30.7). Mixed logistic regression ruled out the effect on death both of a bitch and cesarean type (programmed vs. emergency). PPR and CD values were associated with litter size; large litters had lower PPR (p < 0.01) and higher CD (p < 0.05) than small litters. The relationship between PPR and CD was negative and significant (p < 0.01). Necrosis was a frequent finding in canine placentas, but only when multifocal-confluent was it associated with a poor outcome. The litter size influenced PPR (lower in L) and CD (higher in L), and this is likely due to the plasticity of placenta adaptation
Lyotropic liquid-crystalline phase of oligo(ethylene oxide) surfactant/transition metal salt and the synthesis of mesostructured cadmium sulfide
Lyotropic liquid-crystalline (LLC), transition metal salt: oligo(ethylene oxide) nonionic surfactant (CnH2n+1(CH2CH2O)mOH, denoted as CnEOm), systems have been studied by means of diffraction, microscopy, and spectroscopy to elucidate the structural, thermal, and templating properties. In the system, the lyotropic salts of transition metal aqua complexes, such as chlorides and sulfates, are insoluble and do not form a LC phase in CnEOm-type nonionic surfactants. However, the transition metal aqua complexes of nitrates and perchlorates are soluble and form 2D and 3D hexagonal and cubic mesophases. These phases are stable in a very broad range of salt:surfactant mole ratios (1.0 and 3.6). The nitrate salts form a hexagonal mesophase. However, in high nitrate salt concentrations (above 3.2 salt:surfactant mole ratio), the salt crystals are either insoluble or the salt:surfactant mixtures are in a cubic mesophase. The structure and thermal properties of the new system are determined by the solubility of the transition metal salts, the concentration of the salt, and the surfactant type. The LC [Cd(H2O)4](NO3)2: C12EO10 mesophase has been reacted with H2S gas to produce solid mesostructured CdS (meso-CdS). The meso-CdS particles are spherical in morphology and are made up of hierarchical organization of 2-4-nm CdS particles. The salt:surfactant LLC systems and the solid meso-CdS have been investigated using polarized optical microscopy, X-ray diffraction, Fourier transform infrared, Fourier transform Raman, and UV-vis absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy
Insulin Infusion During Normoglycemia Modulates Insulin Secretion According to Whole-Body Insulin Sensitivity
OBJECTIVE—Glucose is the major stimulus for insulin release. Time course and amount of insulin secreted after glycemic stimulus are different between type 2 diabetes mellitus (T2DM) patients and healthy subjects. In rodents, it was demonstrated that insulin can modulate its own release. Previous studies in humans yielded contrasting results: Insulin was shown to have an enhancing effect, no effect, or a suppressive effect on its own secretion. Thus, we aimed to evaluate short-term effects of human insulin infusion on insulin secretion during normoglycemia in healthy humans and T2DM subjects of both sex. RESEARCH DESIGN AND METHODS—Hyperinsulinemic-isoglycemic clamps with whole-body insulin-sensitivity (M) and C-peptide measurements for insulin secretion modeling were performed in 65 insulin-sensitive (IS) subjects (45 6 1 year, BMI: 24.8 6 0.5 kg/m2), 17 insulin-resistant (IR) subjects (466 2 years, 28.16 1.3 kg/m2), and 20 T2DMpatients (566 2 years, 28.0 6 0.8 kg/m2; HbA1c = 6.7 6 0.1%). RESULTS—IS subjects (M = 8.8 6 0.3 mg z min21 z kg21) had higher (P, 0.00001) whole-body insulin sensitivity than IR subjects (M = 4.0 6 0.2) and T2DM patients (M = 4.3 6 0.5). Insulin secretion profiles during clamp were different (P, 0.00001) among the groups, in
- …