124 research outputs found

    NAAS Reports

    Get PDF
    Nordic Association for American Studies (NAAS

    Docking-Based 3D-QSAR Studies for 1,3,4-oxadiazol-2-one Derivatives as FAAH Inhibitors

    Get PDF
    This work aimed to construct 3D-QSAR CoMFA and CoMSIA models for a series of 31 FAAH inhibitors, containing the 1,3,4-oxadiazol-2-one moiety. The obtained models were characterized by good statistical parameters: CoMFA Q2 = 0.61, R2 = 0.98; CoMSIA Q2 = 0.64, R2 = 0.93. The CoMFA model field contributions were 54.1% and 45.9% for steric and electrostatic fields, respectively. In the CoMSIA model, electrostatic, steric, hydrogen bond donor, and hydrogen acceptor properties were equal to 34.6%, 23.9%, 23.4%, and 18.0%, respectively. These models were validated by applying the leave-one-out technique, the seven-element test set (CoMFA r2test-set = 0.91; CoMSIA r2test-set = 0.91), a progressive scrambling test, and external validation criteria developed by Golbraikh and Tropsha (CoMFA r20 = 0.98, k = 0.95; CoMSIA r20 = 0.98, k = 0.89). As the statistical significance of the obtained model was confirmed, the results of the CoMFA and CoMSIA field calculation were mapped onto the enzyme binding site. It gave us the opportunity to discuss the structure–activity relationship based on the ligand–enzyme interactions. In particular, examination of the electrostatic properties of the established CoMFA model revealed fields that correspond to the regions where electropositive substituents are not desired, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one moiety. This highlights the importance of heterocycle, a highly electronegative moiety in this area of each ligand. Examination of hydrogen bond donor and acceptor properties contour maps revealed several spots where the implementation of another hydrogen-bond-donating moiety will positively impact molecules’ binding affinity, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one ring. On the other hand, there is a large isopleth that refers to the favorable H-bond properties close to the terminal phenoxy group of a ligand, which means that, generally speaking, H-bond acceptors are desired in this area

    Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling

    Get PDF
    A mutated KRAS protein is frequently observed in human cancers. Traditionally, the oncogenic properties of KRAS missense mutants at position 12 (G12X) have been considered as equal. Here, by assessing the probabilities of occurrence of all KRAS G12X mutations and KRAS dynamics we show that this assumption does not hold true. Instead, our findings revealed an outstanding mutational bias. We conducted a thorough mutational analysis of KRAS G12X mutations and assessed to what extent the observed mutation frequencies follow a random distribution. Unique tissue-specific frequencies are displayed with specific mutations, especially with G12R, which cannot be explained by random probabilities. To clarify the underlying causes for the nonrandom probabilities, we conducted extensive atomistic molecular dynamics simulations (170 its) to study the differences of G12X mutations on a molecular level. The simulations revealed an allosteric hydrophobic signaling network in KRAS, and that protein dynamics is altered among the G12X mutants and as such differs from the wild-type and is mutation-specific. The shift in long-timescale conformational dynamics was confirmed with Markov state modeling. A G12X mutation was found to modify KRAS dynamics in an allosteric way, which is especially manifested in the switch regions that are responsible for the effector protein binding. The findings provide a basis to understand better the oncogenic properties of KRAS G12X mutants and the consequences of the observed nonrandom frequencies of specific G12X mutations.Peer reviewe

    In Vitro Identification and In Vivo Confirmation of Inhibitors for Sweet Potato Chlorotic Stunt Virus RNA Silencing Suppressor, a Viral RNase III

    Get PDF
    Sweet potato virus disease (SPVD), caused by synergistic infection of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV), is responsible for substantial yield losses all over the world. However, there are currently no approved treatments for this severe disease. The crucial role played by RNase III of SPCSV (CSR3) as an RNA silencing suppressor during the viruses' synergistic interaction in sweetpotato makes it an ideal drug target for developing antiviral treatment. In this study, high-throughput screening (HTS) of small molecular libraries targeting CSR3 was initiated by a virtual screen using Glide docking, allowing the selection of 6,400 compounds out of 136,353. We subsequently developed and carried out kinetic-based HTS using fluorescence resonance energy transfer technology, which isolated 112 compounds. These compounds were validated with dose-response assays including kinetic-based HTS and binding affinity assays using surface plasmon resonance and microscale thermophoresis. Finally, the interference of the selected compounds with viral accumulation was verified in planta. In summary, we identified five compounds belonging to two structural classes that inhibited CSR3 activity and reduced viral accumulation in plants. These results provide the foundation for developing antiviral agents targeting CSR3 to provide new strategies for controlling sweetpotato virus diseases. IMPORTANCE We report here a high-throughput inhibitor identification method that targets a severe sweetpotato virus disease caused by coinfection with two viruses (SPCSV and SPFMV). The disease is responsible for up to 90% yield losses. Specifically, we targeted the RNase III enzyme encoded by SPCSV, which plays an important role in suppressing the RNA silencing defense system of sweetpotato plants. Based on virtual screening, laboratory assays, and confirmation in planta, we identified five compounds that could be used to develop antiviral drugs to combat the most severe sweetpotato virus disease.Peer reviewe

    1,2,6-thiadiazinones as novel narrow spectrum calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) inhibitors

    Get PDF
    We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors

    DPD-inspired discovery of novel LsrK kinase inhibitors: an opportunity to fight antimicrobial resistance

    Get PDF
    Antibiotic resistance is posing a continuous threat to global public health and represents a huge burden for society as a whole. In the past decade, the interference with bacterial quorum sensing (QS) (i.e., cell cell communication) mechanisms has extensively been investigated as a valid therapeutic approach in the pursuit of a next generation of antimicrobials. (S)-4,5-Dihydroxy-2,3-pentanedione, commonly known as (S)-DPD, a small signaling molecule that modulates QS in both Gram-negative and Gram-positive bacteria, is phosphorylated by LsrK, and the resulting phospho-DPD activates QS. We designed and prepared a small library of DPD derivatives, characterized by five different scaffolds, and evaluated their LsrK inhibition in the context of QS interference. SAR studies highlighted the pyrazole moiety as an essential structural element for LsrK inhibition. Particularly, four compounds were found to be micromolar LsrK inhibitors (IC50 ranging between 100 mu M and 500 mu M) encouraging further exploration of novel analogues as potential new antimicrobials.Peer reviewe

    Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1

    Get PDF
    Background STAT1 is an essential transcription factor for interferon-Îł-mediated gene responses. A distinct sumoylation consensus site (ψKxE) 702IKTE705 is localized in the C-terminal region of STAT1, where Lys703 is a target for PIAS-induced SUMO modification. Several studies indicate that sumoylation has an inhibitory role on STAT1-mediated gene expression but the molecular mechanisms are not fully understood. Results Here, we have performed a structural and functional analysis of sumoylation in STAT1. We show that deconjugation of SUMO by SENP1 enhances the transcriptional activity of STAT1, confirming a negative regulatory effect of sumoylation on STAT1 activity. Inspection of molecular model indicated that consensus site is well exposed to SUMO-conjugation in STAT1 homodimer and that the conjugated SUMO moiety is directed towards DNA, thus able to form a sterical hindrance affecting promoter binding of dimeric STAT1. In addition, oligoprecipitation experiments indicated that sumoylation deficient STAT1 E705Q mutant has higher DNA-binding activity on STAT1 responsive gene promoters than wild-type STAT1. Furthermore, sumoylation deficient STAT1 E705Q mutant displayed enhanced histone H4 acetylation on interferon-Îł-responsive promoter compared to wild-type STAT1. Conclusions Our results suggest that sumoylation participates in regulation of STAT1 responses by modulating DNA-binding properties of STAT1. Keywords: Signal transduction; Transcription factors; Sumoylation; Signal transducers and activators of transcription (STATs); InterferonBioMed Central open acces

    Quinazoline-Based Antivirulence Compounds Selectively Target Salmonella PhoP/PhoQ Signal Transduction System

    Get PDF
    The rapid emergence of multidrug resistance among bacterial pathogens has become a significant challenge to human health in our century. Therefore, development of next-generation antibacterial compounds is an urgent need. Two-component signal transduction systems (TCS) are stimulus-response coupling devices that allow bacteria to sense and elaborate adaptive responses to changing environmental conditions, including the challenges that pathogenic bacteria face inside the host. The differential presence of TCS, present in bacteria but absent in the animal kingdom, makes them attractive targets in the search for new antibacterial compounds. In Salmonella enterica, the PhoP/PhoQ two-component system controls the expression of crucial phenotypes that define the ability of the pathogen to establish infection in the host. We now report the screening of 686 compounds from a GlaxoSmithKline published kinase inhibitor set in a high-throughput whole-cell assay that targets Salmonella enterica serovar Typhimurium PhoP/PhoQ. We identified a series of quinazoline compounds that showed selective and potent downregulation of PhoP/PhoQ-activated genes and define structural attributes required for their efficacy. We demonstrate that their bioactivity is due to repression of the PhoQ sensor autokinase activity mediated by interaction with its catalytic domain, acting as competitive inhibitors of ATP binding. While noncytotoxic, the hit molecules exhibit antivirulence effect by blockage of S. Typhimurium intramacrophage replication. Together, these features make these quinazoline compounds stand out as exciting leads to develop a therapeutic intervention to fight salmonellosis.Fil: Carabajal, MarĂ­a AyelĂ©n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Asquith, Christopher R. M.. University of North Carolina; Estados UnidosFil: Laitinen, Tuomo. University of North Carolina; Estados UnidosFil: Tizzard, Graham J.. University of North Carolina; Estados UnidosFil: Yim, LucĂ­a. Universidad de la RepĂșblica; UruguayFil: Rial, AnalĂ­a. Universidad de la RepĂșblica; UruguayFil: Chabalgoity, JosĂ© A.. Universidad de la RepĂșblica; UruguayFil: Zuercher, William J.. University of North Carolina; Estados UnidosFil: Garcia Vescovi, Eleonora. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; Argentin
    • 

    corecore