22 research outputs found

    LZER0: A Cost-Effective Multi-Purpose GNSS Platform

    Get PDF
    Recent advances in Global Navigation Satellite System (GNSS) technology have made low-cost sensors available to the mass market, opening up new opportunities for real-time ground deformation and structure monitoring. In this paper, we present a new product developed in this framework by the National Institute of Oceanography and Applied Geophysics–OGS in collaboration with a private company (SoluTOP SAS): a cost-effective, multi-purpose GNSS platform called LZER0, suitable not only for surveying measurements, but also for monitoring tasks. The LZER0 platform is a complete system that includes the GNSS equipment (M8T single-frequency model produced by u-blox) and the web portal where the results are displayed. The GNSS data are processed using the RTKLIB software package, and the processed results are made available to the end user. The relative positioning mode was adopted both with real-time and post-processing RTKLIB engines. We present three applications of LZER0—cadastral, monitoring, and automotive—which demonstrate that it is a flexible, multi-purpose platform that is easy to use in terms of both hardware and software, and can be easily deployed to perform various tasks in the research, educational, or professional sectors

    A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous

    Get PDF
    This paper presents a new southern North Atlantic plate model from Late Cretaceous to present, with the aim of constraining the kinematics of the Iberian plate during the last 83.5 Myr. This model is presented along with a detailed isochron map generated through the analysis of 3 aeromagnetic tracks and ~400 ship tracks from the National Centers for Environmental Information database. We present a new technique to obtain well‐constrained estimates of the Iberia‐North America plate motions from magnetic anomalies, overcoming the scarcity of large‐offset fracture zones and transform faults. We build an integrated kinematic model for NW Africa, Morocco, Iberia, Europe, and North America, which shows that the deformation is partitioned between Pyrenees and Betic‐Rif orogenic domain during the Late Cretaceous‐Oligocene time interval. In the Eastern Betics domain, the calculated amount of NW Africa‐Iberia convergence is ~80 km between 83.5 and 34 Ma, followed by ~150 km since the Oligocene. The motion of Iberia relative to Europe in the Central Pyrenees is characterized by overall NE directed transpressional motion during the Campanian and the Paleocene, followed by NW directed transpressional movement until the Lutetian and overall NNW directed convergence from Bartonian to Chattian. This motion occurs along the axis of the Bay of Biscay from the Santonian–Campanian boundary to the middle Priabonian, subsequently jumping to King's Trough at Anomaly 17 (36.62 Ma)

    The Central Asia collision zone: numerical modelling of the lithospheric structure and the present-day kinematics

    Get PDF
    [eng] The Central Asia region is dominated by the Zagros orogen in the western sector and the Himalaya-Tibetan orogen in the eastern sector, which resulted from the subduction of the Tethys oceanic lithosphere towards the NNE and the subsequent collision of the Arabia and India plates with the Eurasia plate during the Cenozoic. The collisions produced tectonic escapes toward lateral regions (in Anatolia and south-eastern Tibet), oblique convergence in the Zagros fold-and-thrust belt, the formation of the Makran subduction zone and shortening in Himalaya, Karakorum and Tibetan Plateau. Different mountain belts also developed far into the continent interiors, e.g. Caucasus, Alborz, Kopet Dagh, Pamir and Tian Shan. The lithosphere structure plays an important role in controlling the surface deformation and its propagation inside the continent. The compositional and strength heterogeneities within the lithosphere directly affect the tectonic behaviour of the region and, hence, the evolution of the orogenic systems. This Thesis focalizes on the characterization of the lithospheric structure of the Zagros and the Himalayan-Tibetan orogens and on the role of the lithospheric structure and rheology in the accommodation of the deformation related to the Arabia and India convergence against Eurasia. The lithospheric structure of the Zagros and the Himalaya-Tibetan orogens has been characterized from the thermal, compositional and seismological viewpoint using an integrated geophysical-petrological modelling approach. The models make compatible seismic, density and thermal modelling findings, and allow quantifying the effect of mineral physics on previous results from integrated thermal models. The results obtained in the Zagros orogen reveal that the transition from the Arabian to the Eurasian lithosphere is characterized by a thinning of the lithospheric mantle extending from the suture zone beneath the Zagros range to the Alborz in the North and the Central Iran. The lithospheric mantle composition is compatible with a Proterozoic peridotitic mantle-type beneath the Arabian Platform, the Mesopotamian Foreland Basin and the accreted terrains of the Eurasia plate, and with a more depleted Phanerozoic harzburgitic mantle-type below the frontal parts of the Zagros range. In the Himalaya-Tibetan orogen, the results suggest that the present-day lithospheric mantle structure is laterally-varying within the Tibetan Plateau in the east-west direction. The lithospheric mantle is thicker and more buoyant in the western sector than in the north-eastern sector. The lherzolitic mantle-type is the dominant mantle composition, but it changes to a more fertile composition beneath the Tarim Basin, to a Fe-Mg-rich mantle beneath Tian Shan, Junggar and Altai regions, and to highly MgO-depleted mantle in the north-eastern Tibetan Plateau. The results on the present-day lithospheric structure of the Zagros and the Himalaya-Tibetan orogens have been combined with the present-day kinematics, geodetic observations and stress data to characterize the current deformation patterns in the Central Asia region related to the tectonic convergence of the Arabia and India plates with Eurasia. The thin-sheet approach allowed investigating the effect of the lithospheric structure, rheology, boundary conditions, and friction coefficient on the predicted velocity and stress fields. The models reproduce the main directions of the velocities in Central Asia by only imposing the convergence of Arabia and India plates respect to the fix Eurasia, and varying the rheology parameters. The models simulate the observed kinematics including the counter-clockwise rotation of Arabia and Iran triggering the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau structural domains. Besides the large scale, the models offer a coherent result in regions with little or no data coverage, as in the case of the Arabia-India inter-collision zone, over large areas of Pakistan and entire Afghanistan. The study has been supported by the project ATIZA (CGL2009-09662-BTE), and the FPI grant associated to.[spa] Asia Central está dominada por dos importantes orógenos, el orógeno del Zagros y el sistema Himalaya-Tibet, resultantes de de la colisión de las placas Arábiga e India con el margen meridional de la placa Eurasiática. Esta Tesis se focaliza en: 1) la caracterización del manto litosférico a través de un metódo de modelización geofísico-petrológico integrado y 2) el estudio del efecto de la estructura litosférica y de la reología en la deformación neotectónica relacionada con la convergencia de Arabia y de India respecto a Eurasia utilizando una metodología basada en la aproximación de lámina delgada (thin-sheet). En el caso del orógeno del Zagros, los resultados revelan que el manto litosférico se adelgaza debajo de Irán Central, del Alborz y parcialmente debajo de la cordillera del Zagros. En el caso del sistema Himalaya-Tibet, los resultados indican una litosfera engrosada en el sector occidental, debajo de la cordillera Himalaya, Meseta del Tibet, Kunlun Shan y Tian Shan, y un adelgazamiento debajo de las cuencas de Tarim y de Junggar. En el sector oriental los resultados confirman que la Meseta del Tibet está suportada por una litosfera más adelgazada y caliente en el norte que en el sur. Ha sido necesario introducir variaciones laterales de composición mantélica, relacionadas con procesos del manto litosférico superior, en todos los perfiles modelados evidenciando la presencia de diferentes dominios litosféricos. El estudio de la deformación neotectónica ha revelado el rol clave de la reología en la reproducción del campo de esfuerzos y de velocidades en Asia Central, sugiriendo una litosfera menos rígida en la Meseta del Tibet que en la meseta de Irán. En conjunto, la deformación es más rápida en la zona de colisión India-Eurasia que en la zona de colisión Arabia-Eurasia. Finalmente, la presencia de un manto adelgazado en el noreste del Tibet y la consecuente disminución de viscosidad debida al aumento de temperatura explicarían la presencia de fallas extensionales en la Meseta del Tibet y reconciliarían el modelo con los datos de flujo de calor elevado y bajas velocidades sísmicas registrados en la región. Esta tesis ha sido financiada por el proyecto ATIZA (CGL2009-09662-BTE) y la beca FPI asociad

    Applicability of Cost-Effective GNSS Sensors for Crustal Deformation Studies

    No full text
    The geodetic monitoring of the continuous crustal deformation in a particular region has traditionally been the prerogative of the scientific communities capable of affording high-price geodetic-class instruments to track the tiny movements of tectonic plates without losing precision. However, GNSS technology has been continuously and rapidly growing, and in the last years, new cost-efficient instruments have entered the mass market, gaining the attention of the scientific community for potentially being high-performing alternative solutions. In this study, we match in parallel a dual-frequency low-cost receiver with two high-price geodetic instruments, all connected to the same geodetic antenna. We select North-East Italy as testing area, and we process the data together with the observations coming from a network of GNSS permanent stations operating in this region. We show that mm-order precision can be achieved by cost-effective GNSS receivers, while the results in terms of time series are largely comparable to those obtained using high-price geodetic receivers

    Continental Deformation in Central Eurasia: Insights From a Neotectonic Study

    No full text
    The Central Eurasia region hosts wide deforming areas, with diffused or localized deformation occurring even hundreds of kilometres behind the Arabia-Eurasia and India-Eurasia plate boundaries. A key-parameter controlling the propagation of deformation to the continent interiors is the lithosphere strength. By using a numerical technique based on the thin-sheet approximation, we explore the present-day deformation in Central Eurasia and the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields. The lithosphere strength is calculated from the lithosphere structure and thermal regime. A crustal and lithospheric map derived from the combination of elevation and geoid anomaly with thermal analysis, showing thin lithosphere beneath the Iranian Plateau and thick lithosphere beneath the Tibetan Plateau, is used to build a reference model. Changes in the rheological parameters, friction coefficient on faults and velocity boundary conditions have been applied. A model with thin lithosphere in NE-Tibet following previous geophysical studies has been also considered. Models have been evaluated by comparing the predictions with available data on seismic deformation, stress directions and GPS velocities. A first order approximation of the velocity and stress directions is obtained, reproducing the counter-clockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults within Tibet a weaker lithosphere is required, provided by i) a change in the rheological parameters or ii) reduction of the lithosphere thickness in NE-Tibet. The temperature increase generated by the lithospheric thinning would allow also reconciling the model with the high heat flow and low mantle seismic velocities observed in the area.Peer Reviewe

    Combining the present-day lithospheric structure of Central Eurasia with plate kinematics: study of the current deformation along the southern margin of the Eurasia plate

    No full text
    Annual TOPO-EUROPE workshop, Antibes (France), Oct 4-7, 2015We model the neotectonic deformation in Central Eurasia to nvestigate the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields related to the tectonic convergence of the Arabia and India plates against a fix Eurasia plate. The applied geodynamic modelling technique (SHELLS, Bird et al., 2008) allows inferring the surface velocity field, stress directions, tectonic regime and strain distribution by applying velocity conditions to the model boundaryThe present work is supported by ATIZA (CGL2009-09662-BTE), TECLA (CGL2011-26670), Topo-Iberia (CSD2006-0004) projects. A big thank you to Peter Bird for the helpful be reproduced with the thin-sheet approach.and constructive discussions on thin-sheet model

    The Central Eurasia collision zone: insights from a neotectonic study

    No full text
    In this study, we explore the neotectonic deformation in the whole Central Eurasia, including both the India- Eurasia and the Arabia-Eurasia collision zones, by using the thin-sheet approach in which the lithosphere strength is calculated from the lithosphere structure and thermal regime. We investigate the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields. The resulting models have been evaluated by comparing the predictions with available data on seismic deformation, stress directions and GPS velocities. A first order approximation of the velocity and stress directions is obtained, reproducing the counter-clockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults within Tibet a weaker lithosphere is required, provided by a change in the rheological parameters or a reduction of the lithosphere thickness in NE-Tibet. The temperature increase generated by the lithospheric thinning below the Tibetan Plateau would also allow reconciling the model with the high heat flow and low mantle seismic velocities observed in the area. Besides the large scale, this study offers a coherent result in regions with little or no data coverage, as in the case of the Arabia-India inter-collision zone, over large areas of Pakistan and entire Afghanistan.The study is supported by MITE (CGL2014-59516-P) and WE-ME (PIE-CSIC-201330E111) projectsPeer Reviewe

    Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring

    No full text
    The constant monitoring of active landslides, particularly those located in the proximity of populated areas or touristic places, is crucial for early warning and risk-management purposes. The commonly used techniques deploy expensive instrumentation that can be hardly afforded, especially by small mountain communities in which landslide events often occur repeatedly. In recent years, the scientific community, as well as the private sector, have devoted growing effort to reducing the costs of monitoring systems. In this work, we present a monitoring network based on single-frequency Global Positioning System (GPS) sensors that have been activated to monitor an active landslide in the Carnic Alps, North-Eastern Italy. The system, which was composed of 12 single-frequency GPS stations, one seismometric station coupled with a single-frequency GPS instrument for real-time monitoring, and one permanent dual-frequency GPS station located in a stable area, provided daily reports of the landslide motion to the local authorities and administration. We show that this system is a valuable, flexible, and cost-effective tool for quick landslide characterization, and has high potential to be used as a landslide early warning system in case of emergency situations

    Lithospheric structure of the Western Iberian Atlantic Margin

    No full text
    The Western Iberia Atlantic margin has been the object of multiple geophysical surveys in the last two decades, which highlight the crustal architecture of a hyperextended, magma-poor passive margin with a wide transition zone of exhumed mantle peridotites and anomalously small magma fractions. However, studies dealing with its lithospheric structure are lacking. We present a 2D model of the present-day lithospheric structure along a 530-km transect of theWestern Iberian Margin, from the Southern Iberian Abyssal Plain to the Lusitanian Basin. The model combines seismic and geological data, mantle petrology, mineral physics and geophysical observables (gravity, geoid, topography, mantle seismic velocities and heat flow) within a self-consistent thermodynamic framework. Results show that the crustal thickness decreases gradually from 30 km below the Lusitanian Basin onshore to11 km in the Abyssal Plain, 250 km further oceanwards, while the LAB rises from 140 km to 110 km, respectively. Furthermore, our results favour a 22% degree of serpentinization of the exhumed mantle which represents a 4.4% of water content. The study is supported by project ALPIMED (PIE-CSIC-201530E082)Peer Reviewe

    Vertical crustal movements from differential tide gauge observations and satellite altimetry in southern Italy

    No full text
    5Our goal is to determine vertical crustal movement rates from tide gauge and satellite altimetry measurements. Tide gauges measure sea level, but as they are fixed to the crust, they sense both sea surface height variations and vertical crustal movements. The differential sea level rates of sufficiently nearby stations are a good means to determine differential crustal movement rates, when sea level height variations can be assumed to be homogeneous. Satellite altimetric measurements determine sea surface height variations directly and can be used to separate the crustal signal from the sea surface height variations in tide gauge measurements. The correction of the tide gauge sea level rates for the sea surface height contribution requires collocation of the satellite pass and the tide gauge station. We show that even if this is not the case, the satellite altimetric observations enable correction of differential tide gauge rates for the effects of sea surface rate inhomogeneities. We apply the methodology to an area of broad scientific interest, due to its high seismic risk and its location as standpoint for a proposed major bridge connecting Sicily to the Italian mainland. We find that the Southern Calabria and the eastern Sicily tide gauges have a deficit in sea level increase of 1-2 mm/yr with respect to the north western Sicilian tide gauge. The satellite altimetric observations show that this differential movement must be caused by a tectonic component, because the sea surface rates are higher offshore eastern Sicily compared to offshore western Sicily. The satellite altimetric rates show that the sea surface rates are inhomogeneous in the Mediterranean and have larger amplitudes as we move away from the coast than immediately offshore. Our technique can be applied to any part of the world where tide gauge observations are available, because satellite altimetric observations are global.nonenoneBraitenberg C.; Mariani P.; Tunini L.; Grillo B.; Nagy I.Braitenberg, Carla; Mariani, Patrizia; Tunini, Lavinia; Grillo, Barbara; Nagy, ILDIKO' ERZSEBE
    corecore