35 research outputs found

    Bioluminescence imaging in brain tumor: a powerful tool

    Get PDF
    Glioblastoma represents the most malignant and lethal among brain tumours because of its highly infiltration capacity and invasion into the normal brain that account for its resistance to treatments (chemotherapy and radiotherapy). Recent advance and development of technologies to non-invasively image brain tumour growth in living animals can open an opportunity to monitor directly the efficacy of the treatment on tumour development. In vivo bioluminescence imaging is based on light-emitting enzymes, luciferases, which require specific substrates for light production. When linked to a specific biological process/pathway in an animal model of human disease, the enzyme-substrate interactions become biological indicators that can be studied. In order to explore and compare different imaging modalities (MRI and bioluminescence imaging) we have validated the use of bioluminescence imaging to monitor glioblastoma progression in vivo. The human glioma cell line (DBTRG-05MG) derived from an adult patient with glioblastoma multiforme who had been treated with local brain irradiation and multidrug chemotherapy has been used for the experiment. The DBTRG-05MG cell line was stably transfected with TCF-luciferase and orthotopic implantated onto immunodeficient mice. Bioluminescence technology was used to follow tumour growth in parallel with classical MRI on the same animals

    Multimodal Treatment Eliminates Cancer Stem Cells and Leads to Long-Term Survival in Primary Human Pancreatic Cancer Tissue Xenografts.

    Get PDF
    Copyright: 2013 Hermann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.PURPOSE: In spite of intense research efforts, pancreatic ductal adenocarcinoma remains one of the most deadly malignancies in the world. We and others have previously identified a subpopulation of pancreatic cancer stem cells within the tumor as a critical therapeutic target and additionally shown that the tumor stroma represents not only a restrictive barrier for successful drug delivery, but also serves as a paracrine niche for cancer stem cells. Therefore, we embarked on a large-scale investigation on the effects of combining chemotherapy, hedgehog pathway inhibition, and mTOR inhibition in a preclinical mouse model of pancreatic cancer. EXPERIMENTAL DESIGN: Prospective and randomized testing in a set of almost 200 subcutaneous and orthotopic implanted whole-tissue primary human tumor xenografts. RESULTS: The combined targeting of highly chemoresistant cancer stem cells as well as their more differentiated progenies, together with abrogation of the tumor microenvironment by targeting the stroma and enhancing tissue penetration of the chemotherapeutic agent translated into significantly prolonged survival in preclinical models of human pancreatic cancer. Most pronounced therapeutic effects were observed in gemcitabine-resistant patient-derived tumors. Intriguingly, the proposed triple therapy approach could be further enhanced by using a PEGylated formulation of gemcitabine, which significantly increased its bioavailability and tissue penetration, resulting in a further improved overall outcome. CONCLUSIONS: This multimodal therapeutic strategy should be further explored in the clinical setting as its success may eventually improve the poor prognosis of patients with pancreatic ductal adenocarcinoma

    Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion

    Get PDF
    Reliable model systems are needed to elucidate the role cancer stem cells (CSCs) play in pediatric brain tumor drug resistance. The majority of studies to date have focused on clinically distinct adult tumors and restricted tumor types. Here, the CSC component of 7 newly established primary pediatric cell lines (2 ependymomas, 2 medulloblastomas, 2 gliomas, and a CNS primitive neuroectodermal tumor) was thoroughly characterized. Comparison of DNA copy number with the original corresponding tumor demonstrated that genomic changes present in the original tumor, typical of that particular tumor type, were retained in culture. In each case, the CSC component was approximately 3–4-fold enriched in neurosphere culture compared with monolayer culture, and a higher capacity for multilineage differentiation was observed for neurosphere-derived cells. DNA content profiles of neurosphere-derived cells expressing the CSC marker nestin demonstrated the presence of cells in all phases of the cell cycle, indicating that not all CSCs are quiescent. Furthermore, neurosphere-derived cells demonstrated an increased resistance to etoposide compared with monolayer-derived cells, having lower initial DNA damage, potentially due to a combination of increased drug extrusion by ATP-binding cassette multidrug transporters and enhanced rates of DNA repair. Finally, orthotopic xenograft models reflecting the tumor of origin were established from these cell lines. In summary, these cell lines and the approach taken provide a robust model system that can be used to develop our understanding of the biology of CSCs in pediatric brain tumors and other cancer types and to preclinically test therapeutic agents

    In vivo modulation of 73 kDa Heat Shock Cognate and 78 kDa Glucose-Regulating Protein Gene Expression in Rat Liver and Brain by Ethanol

    No full text

    Dexamethasone inhibits the anti-tumor effect of interleukin-4 on rat experimental gliomas

    No full text

    The therapeutic potential of neural stem/progenitor cells in murine globoid cell leukodystrophy is conditioned by macrophage/microglia activation

    No full text
    corecore