8,067 research outputs found
Optimal Topological Test for Degeneracies of Real Hamiltonians
We consider adiabatic transport of eigenstates of real Hamiltonians around
loops in parameter space. It is demonstrated that loops that map to nontrivial
loops in the space of eigenbases must encircle degeneracies. Examples from
Jahn-Teller theory are presented to illustrate the test. We show furthermore
that the proposed test is optimal.Comment: Minor corrections, accepted in Phys. Rev. Let
Magneto-Infrared Spectroscopic Study of Ultrathin BiTe Single Crystals
Ultrathin BiTe single crystals laid on Scotch tape are
investigated by Fourier transform infrared spectroscopy at K and in a
magnetic field up to T. The magneto-transmittance spectra of the Bi%
Te/tape composite are analyzed as a two-layer system and the optical
conductivity of BiTe at different magnetic fields are extracted. We
find that magnetic field modifies the optical conductivity in the following
ways: (1) Field-induced transfer of the optical weight from the lower frequency
regime (cm) to the higher frequency regime (cm) due
to the redistribution of charge carriers across the Fermi surface. (2) Evolving
of a Fano-resonance-like spectral feature from an anti-resonance to a resonance
with increasing magnetic field. Such behavior can be attributed to the
electron-phonon interactions between the optical phonon mode and
the continuum of electronic transitions. (3) Cyclotron resonance resulting from
the inter-valence band Landau level transitions, which can be described by the
electrodynamics of massive Dirac holes
How should one formulate, extract, and interpret `non-observables' for nuclei?
Nuclear observables such as binding energies and cross sections can be
directly measured. Other physically useful quantities, such as spectroscopic
factors, are related to measured quantities by a convolution whose
decomposition is not unique. Can a framework for these nuclear structure
`non-observables' be formulated systematically so that they can be extracted
from experiment with known uncertainties and calculated with consistent theory?
Parton distribution functions in hadrons serve as an illustrative example of
how this can be done. A systematic framework is also needed to address
questions of interpretation, such as whether short-range correlations are
important for nuclear structure.Comment: 7 pages. Contribution to the "Focus issue on Open Problems in Nuclear
Structure", Journal of Physics
Resonant Subband Landau Level Coupling in Symmetric Quantum Well
Subband structure and depolarization shifts in an ultra-high mobility
GaAs/Al_{0.24}Ga_{0.76}As quantum well are studied using magneto-infrared
spectroscopy via resonant subband Landau level coupling. Resonant couplings
between the 1st and up to the 4th subbands are identified by well-separated
anti-level-crossing split resonance, while the hy-lying subbands were
identified by the cyclotron resonance linewidth broadening in the literature.
In addition, a forbidden intersubband transition (1st to 3rd) has been
observed. With the precise determination of the subband structure, we find that
the depolarization shift can be well described by the semiclassical slab plasma
model, and the possible origins for the forbidden transition are discussed.Comment: 4 pages, 2 figure
A note on the realignment criterion
For a quantum state in a bipartite system represented as a density matrix,
researchers used the realignment matrix and functions on its singular values to
study the separability of the quantum state. We obtain bounds for elementary
symmetric functions of singular values of realignment matrices. This answers
some open problems proposed by Lupo, Aniello, and Scardicchio. As a
consequence, we show that the proposed scheme by these authors for testing
separability would not work if the two subsystems of the bipartite system have
the same dimension.Comment: 11 pages, to appear in Journal of Physics A: Mathematical and
Theoretica
Heavy Quark Mass Effects in Deep Inelastic Scattering and Global QCD Analysis
A new implementation of the general PQCD formalism of Collins, including
heavy quark mass effects, is described. Important features that contribute to
the accuracy and efficiency of the calculation of both neutral current (NC) and
charged current (CC) processess are explicitly discussed. This new
implementation is applied to the global analysis of the full HERA I data sets
on NC and CC cross sections, with correlated systematic errors, in conjunction
with the usual fixed-target and hadron collider data sets. By using a variety
of parametrizations to explore the parton parameter space, robust new parton
distribution function (PDF) sets (CTEQ6.5) are obtained. The new quark
distributions are consistently higher in the region x ~ 10^{-3} than previous
ones, with important implications on hadron collider phenomenology, especially
at the LHC. The uncertainties of the parton distributions are reassessed and
are compared to the previous ones. A new set of CTEQ6.5 eigenvector PDFs that
encapsulates these uncertainties is also presented.Comment: 32 pages, 12 figures; updated, Publication Versio
Leptoproduction of heavy quarks
There are presently two approaches to calculating heavy quark production for the deeply inelastic scattering process in current literature. The conventional fixed-flavor scheme focuses on the flavor creation mechanism and includes the heavy quark only as a final state particle in the hard scattering cross section; this has been computed to next-to-leading order--\alphas^2. The more recently formulated variable-flavor scheme includes, in addition, the flavor excitation process where the initial state partons of all flavors contribute above their respective threshold, as commonly accepted for calculations of other high energy processes; this was initially carried out to leading order--\alphas^1. We first compare and contrast these existing calculations. As expected from physical grounds, the next-to-leading-order fixed-flavor scheme calculation yields good results near threshold, while the leading-order variable-flavor scheme calculation works well for asymptotic Q^2. The quality of the calculations in the intermediate region is dependent upon the x and Q^2 values chosen. An accurate self-consistent QCD calculation over the entire range can be obtained by extending the variable-flavor scheme to next-to-leading-order. Recent work to carry out this calculation is described. Preliminary numerical results of this calculation are also presented for comparison
- …
