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Abstract
For a quantum state in a bipartite system represented as a density matrix,
researchers used the realignment matrix and functions on its singular values to
study the separability of the quantum state. We obtain bounds for elementary
symmetric functions of singular values of realignment matrices. This answers
some open problems proposed by Lupo, Aniello and Scardicchio. As a
consequence, we show that the proposed scheme by these authors for testing
separability would not work if the two subsystems of the bipartite system have
the same dimension.

PACS numbers: 03.67.−a, 03.67.Mn

1. Introduction

Quantum entanglement was first proposed by Einstein, Podolsky and Rosen [3] and
Schrödinger [17] as a strange phenomenon of quantum mechanics, criticizing the completeness
of the quantum theory. Nowadays, entanglement is not only regarded as a key for the
interpretation of quantum mechanics or as a mere scientific curiosity, but also as a resource
for various applications, such as quantum cryptography [4], quantum teleportation [1] and
quantum computation [14].

Suppose quantum states of two quantum systems are represented by density matrices
(positive semi-definite matrices with trace 1) of sizes m and n, respectively. States of their
bipartite composition system are represented by mn × mn density matrices. Such a state is
separable if there are positive numbers pj summing up to 1, m × m density matrices ρ1

j and
n × n density matrices ρ2

j such that

ρ =
k∑

j=1

pjρ
1
j ⊗ ρ2

j .
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A state is entangled if it is not separable. In quantum information science, it is important to
determine the separability of a state. However, the problem of characterizing separable states
is NP-hard [5]. Therefore, researchers focus on finding an effective criterion to determine
whether a density matrix is separable or not.

A simple and strong criterion for separability of a density matrix is the computable cross
norm or realignment (CCNR) criterion. The name CCNR comes from the fact that this
criterion has been discovered in two different forms, namely, by cross norms [15, 16] and by
realignment of density matrices [2].

To describe the realignment criterion, let MN be the set of N × N complex matrices.
D(m, n) will denote the set of all mn×mn density matrices and Ds(m, n) the set of separable
density matrices in D(m, n). For any X = [xij ] ∈ Mn, let

vec(X) = (x11, x12, . . . , x1n, x21, x22, . . . , x2n, . . . , xn1, xn2, . . . , xnn).

If ρ = [Xrs]1�r,s�m ∈ D(m, n) with Xrs ∈ Mn, then the realignment of ρ is the m2 × n2

matrix ρR with rows

vec(X11), vec(X12), . . . , vec(X1m), vec(X21), . . . , vec(X2m), . . . , vec(Xm1), . . . vec(Xmm).

For example, if (m, n) = (2, 3) and ρ = [
X11 X12

X21 X22

] ∈ D(2, 3) with Xrs ∈ M3, then

ρR =

⎡
⎢⎢⎣

vec(X11)

vec(X12)

vec(X21)

vec(X22)

⎤
⎥⎥⎦ .

The realignment criterion asserts that if ρ ∈ Ds(m, n), then the sum of the singular values
of ρR is at most 1. Recall that the singular values of an M × N matrix A are the nonnegative
square roots of the k = min{M,N} largest eigenvalues of the matrix AA†.

For convenience of notation, we assume that m � n in the following discussion. For
ρ ∈ D(m, n), let s1 � · · · � sm2 be the singular values of ρR . The realignment criterion can
be stated as

s1 + · · · + sm2 � 1 for ρ ∈ Ds(m, n).

In [10], Lupo, Aniello and Scardicchio suggest further study of the symmetric functions on the
singular values of ρR , in order to find conditions beyond the realignment criterion to identify
entanglement.

Let

S(m, n) = {(s1, . . . , sm2) : s1 � · · · � sm2 are the singular values of ρR,

for some ρ ∈ D(m, n)}
Ss(m, n) = {(s1, . . . , sm2) : s1 � · · · � sm2 are the singular values of ρR,

for some ρ ∈ Ds(m, n)}.
For each 1 < � � m2, define the �th elementary symmetric function

f�(s1, . . . , sm2) =
∑

1�i1<···<i��m2

��
j=1sij .

Following [10], we define for each 1 < � � m2,

B̃�(m, n) = max{f�(s) : s ∈ S(m, n), s = (s1, . . . , sm2) with �m2

i=1 si � 1},
B�(m, n) = max{f�(s) : s ∈ Ss(m, n)}.
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The bounds B̃�(m, n) and B�(m, n) were introduced in [10] using different notations, namely,
x̃�(d,D) and x�(d,D) with (d,D) = (m2, n2).

It follows from the definitions that if B̃�(m, n) > B�(m, n), then there exists an
entangled density matrix ρ such that the sum of singular values of ρR is at most 1
but f�(s1, . . . , sm2) > B�(m, n). Therefore, the bound B�(m, n) can be used to detect
entanglement for which the realignment criterion fails. Numerical estimations for these
bounds were given for (m, n) = (2, 2) and (2, 3) in [10]. The numerical results also suggest
that B̃�(2, 2) = B�(2, 2) and B̃�(2, 3) > B�(2, 3). The authors of [10] raised the following two
open problems in the search for a criterion for entanglement beyond the realignment criterion.

(P1) To determine the actual values of the upper bounds B�(m, n) and B̃�(m, n).
(P2) To determine if B̃�(m, n) > B�(m, n).

In this paper, we study the singular values of ρR for a density matrix ρ. We refine some
inequalities given in [10]. This leads to an explicit formula for B̃�(m, n), for all n � m, except
for m3 − m/2 < n < m3, that gives a partial solution to (P1). Furthermore, we show that
B̃�(n, n) = B�(n, n) for all n and this implies that the answer to (P2) is negative if m = n.

We conclude this section with a reformulation of another simple and strong criterion
for separability in terms of the singular values. Let X = [Xrs]1�r,s�m ∈ D(m, n) with
Xrs ∈ Mn. The partial transpose of X with respect to the second subsystem is given by
XT2 = [

Xt
rs

]
1�r,s�m

, where Xt
rs is the transpose of Xrs. The PPT criterion [12] states that

if X ∈ Ds(m, n), then XT2 is positive semi-definite. For m + n � 5, the PPT criterion is
a necessary and sufficient condition for separability [7], i.e. X ∈ Ds(m, n) if and only if
XT2 ∈ D(m, n). For m, n > 1 and m + n > 5, the PPT criterion and the CCNR criterion are
independent. Note that for X ∈ D(m, n), XT2 is Hermitian. So the singular values of XT2

are the absolute values of the eigenvalues of XT2 . Since the sum of all eigenvalues of XT2 is
equal to trace(XT2) = trace(X) = 1, XT2 is positive semi-definite if and only if the sum of the
singular values of XT2 is at most 1, cf [8, corollary 1]. Thus, the PPT criterion shares a similar
form with the CCNR criterion.

2. Main results and their implications

In this section, we continue to use the notations introduced in section 1 and assume that m � n.
We will describe the results and their implications. The proofs will be given in the next section.

For any density matrix ρ, we obtain the following lower bound for the largest singular
value for ρR , the realigned matrix of ρ.

Lemma 2.1. Let s = (s1, . . . , sm2) ∈ S(m, n). Then s1 � 1√
mn

.

Recall that for two vectors x, y ∈ RN , x is majorized by y, denoted by x ≺ y, if for all
1 � k � N , the sum of the k largest entries of x is not larger than that of y, and the sum of all
entries of x is equal to that of y. A function f : RN → R is Schur concave if f (y) � f (x)

whenever x ≺ y.
Using lemma 2.1, we will show that if n � m3, then the vector s in S(m, n) always

majorize a vector of the form (α, β, . . . , β). One can then apply the theory of majorization
and Schur concave functions (see [11]) to obtain the inequality f�(s) � f�(α, β, . . . , β), as
shown in lemma 2.2.

For 1 � r � N ,
(
N

r

)
will denote the binomial coefficient N!

r!(N−r)! .

3
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Lemma 2.2. Suppose n � m3 and s = (s1, . . . , sm2) ∈ S(m, n) with
∑m2

i=1 si � 1. Let

α = 1√
mn

and β = 1 − α

m2 − 1
=

√
mn − 1√

mn(m2 − 1)
.

Then,

(α,

m2−1︷ ︸︸ ︷
β, . . . , β) ≺ 1∑m2

i=1 si

(s1, . . . , sm2),

and for 1 < � � m2,

f�(s) � f�(α, β, . . . , β) �
(

m2

�

)(
1

m2

)�

.

Furthermore,

(a) f�(s) = f�(α, β, . . . , β) if and only if s = (α, β, . . . , β);

(b) f�(α, β, . . . , β) = (
m2

�

) (
1

m2

)�
if and only if n = m3.

It follows from lemma 2.2 that B̃�(m, n) �
(
m2

�

) (
1

m2

)�
for all m � n � m3 and the equality

holds if and only if n = m3, which has been shown in [10, proposition 4]. The following
result gives an explicit formula for B̃�(m, n) for all n � m, except for m3 − m/2 < n < m3.
This provides a partial solution to problem (P1).

Theorem 2.3. Suppose m � n � m3 − m/2. Then for 1 < � � m2,

B̃�(m, n) = f�(α, β, . . . , β), with α = 1√
mn

and β = 1 − α

m2 − 1
.

If n � m3, then B̃�(m, n) = f�(1/m2, . . . , 1/m2) = (
m2

�

)(
1

m2

)�
.

Theorem 2.3 gives the values of B̃�(m, n) for all n � m, except for m3 − m/2 < n < m3.
In particular, it holds for all n which is divisible by m. In application, both n and m are powers
of 2. Therefore, n is always divisible by m and B̃�(m, n) is given by the above theorem.

When m = n, following our proof of theorem 2.3 in the next section, one actually gives
explicit formulas for B�(n, n) and B̃�(n, n).

Theorem 2.4. For any n and 1 � � � n2,

B�(n, n) = B̃�(n, n) = f�(α, β, . . . , β), with α = 1

n
and β = n − 1

n(n2 − 1)
.

Theorem 2.4 provides partial solutions to both problems (P1) and (P2). In particular, it
gives a negative answer to problem (P2) for the case when m = n. As a result, if m = n, the
upper bounds of the elementary symmetric functions of realignment matrices cannot be used
to derive new conditions for detecting separability beyond the realignment criterion.
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3. Proofs

Proof of lemma 2.1. Define x = (x1, . . . , xm2)t , y = (y1, . . . , yn2)t by

xi =
{

1 if i = k(m + 1) + 1 for some 0 � k � m − 1,

0 otherwise,

and

yj =
{

1 if j = k(n + 1) + 1 for some 0 � k � n − 1,

0 otherwise.

Then, 1√
m

x and 1√
n

y are unit vectors and

1√
m

xt ρR 1√
n

y = traceρ√
mn

= 1√
mn

.

Because

s1 = max{ut ρRv : u ∈ Cm2
and v ∈ Cn2

are unit vectors},
we conclude that s1 � 1√

mn
. �

Proof of lemma 2.2. Note that

n � m3 ⇐⇒ mn � m4 ⇐⇒ √
mn − 1 � m2 − 1 ⇐⇒ β � α.

Suppose s = (s1, . . . , sm2) ∈ S(m, n) with s = ∑m2

i=1 si � 1. Let s̃ = (1/s) s. Then,
s̃1 � s1 � α. Therefore, (1/m2, . . . , 1/m2) ≺ (α, β, . . . , β) ≺ s̃. Since f� is strictly concave
[11], we have

f�(s) � f�(s̃) � f�(α, β, . . . , β) � f�(1/m2, . . . , 1/m2) =
(

m2

�

) (
1

m2

)�

,

and the equality f�(s) = f�(α, β, . . . , β) holds if and only if s = (α, β, . . . , β). This proves
(a). Assertion (b) follows readily from (a). �

Proof of theorem 2.3. We first consider the simpler case when n � m3. It suffices to construct
ρ ∈ D(m, n) for which ρR has singular values 1/m2, . . . , 1/m2. Suppose {E1,1, . . . , Em,m}
is the standard basis of m × m matrices. For 1 � k, � � m, let Fk,� = (Ek,� ⊗ Im2) ⊕ On−m3 .
Then, ρ = 1

m3

∑m
k, �=1 Ek,� ⊗ Fk,� is an mn × mn density matrix while ρR has singular values

1/m2, . . . , 1/m2.
Next, suppose m � n � m3 − m/2. By lemma 2.2, we have B̃�(m, n) � f�(α, β, . . . , β)

for all 1 � � � m2. We will construct ρ ∈ D(m, n) for which ρR has singular
values α, β, . . . , β. Suppose n = mq + r with 0 � r < m. For 1 � k, � � m, let
Fk,� = (Ek,� ⊗ Iq) ⊕ Or . Define

ρ1 =
m∑

k,�=1

Ek,� ⊗ Fk,�, ρ2 = Im ⊗ (Imq ⊕ Or) and ρ3 = Im ⊗ (Omq ⊕ Ir),

and

ρ = s1ρ1 + s2ρ2 + s3ρ3, with s1 = β√
q

, s2 = α2 − β

m
√

q
and s3 = α2.

5
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Denote Jm,n by the m × n matrix with all entries equal to 1. Then, the realigned matrix ρR is
(under permutation of rows and columns) given by

A =

⎡
⎢⎢⎢⎢⎣

q-terms︷ ︸︸ ︷
s1Im + s2Jm,m| · · · |s1Im + s2Jm,m s3Jm,r Om,(m2−m)q O

O O s1Im2−m| · · · |s1Im2−m︸ ︷︷ ︸
q-terms

O

⎤
⎥⎥⎥⎥⎦ .

Note that

AA† = (
qs2

1Im +
(
2qs1s2 + qms2

2 + rs2
3

)
Jm,m

) ⊕ qs2
1Im2−m.

Since Jm,m has only one non-zero eigenvalue m, a matrix of the form μIm + νJm,m has
eigenvalues μ + mν and μ with multiplicities 1 and m − 1, respectively. As a result AA† has
one eigenvalue equal to

qs2
1 + m

(
2qs1s2 + qms2

2 + rs2
3

) = α4(m2q + mr) = α2

and m2 − 1 eigenvalues equal to

qs2
1 = β2.

Hence, taking square roots, we see that the matrix ρR has the desired singular values
α, β, . . . , β.

It remains to show that ρ is a density matrix. Note that

trace(ρ) = s1(mq) + s2(m
2q) + s3(mr) = α2m(mq + r) = 1.

Since ρ1, ρ2 and ρ3 are all positive semi-definite and both s1 and s3 are nonnegative, ρ is a
density matrix if s2 is nonnegative. Note that

s2 � 0 ⇐⇒ 1

mn
�

√
mn − 1√

mn
√

qm(m2 − 1)
⇐⇒ m2 − 1 �

√
n2

q
−

√
n

mq
.

For a fixed m, let

f (q, r) =
√

(mq + r)2

q
−

√
(mq + r)

mq
for q � 1 and 0 � r � m − 1.

Then,

∂f

∂q
= mq − r

2q3/2
+

r

2q
√

mq(mq + r)
> 0 and

∂f

∂r
= 1√

q
− 1

2mq

√
mq

mq + r
> 0

for all q � 1 and 0 � r � m − 1. Therefore,

(a) f (q, r) � f (m2 − 2,m − 1) for all 1 � q � m2 − 2 and r � m − 1, and
(b) f (m2 − 1, r) � f (m2 − 1,m/2) for all r � m/2.

So, it suffices to prove that

(1) f (m2 − 2,m − 1) � m2 − 1 and (2) f (m2 − 1,m/2) � m2 − 1.

To prove (1), since m � 2, we have

m4(m2 − 2) − (m(m2 − 2) + m − 1)2 = 2m4 + 2m3 − m2 − 2m − 1 > 0.

It follows that
√

(m(m2−2)+m−1)2

m2−2 < m2 and hence,

f (m2 − 2,m − 1) =
√

(m(m2 − 2) + m − 1)2

m2 − 2
−

√
(m(m2 − 2) + m − 1)

m(m2 − 2)
� m2 − 1.

6
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To prove (2), since m2 − 1 �
(
m − 1

2m

)2
, i.e.

√
m2 − 1 �

(
m − 1

2m

)
, we have√

(m(m2 − 1) + m/2)2

m2 − 1
= m

√
m2 − 1 +

m

2
√

m2 − 1
� m

(
m − 1

2m

)
+

m

2
√

m2 − 1
,

and √
(m(m2 − 1) + m/2)

m(m2 − 1)
= 1

2

√
1 +

m2

m2 − 1
+

2m
(
m − 1

2m

)
m2 − 1

� 1

2

√
1 +

m2

m2 − 1
+

2m√
m2 − 1

= 1

2

(
1 +

m√
m2 − 1

)
.

Consequently,

f (m2 − 1,m/2) =
√

(m(m2 − 1) + m/2)2

m2 − 1
−

√
(m(m2 − 1) + m/2)

m(m2 − 1)

� m

(
m − 1

2m

)
+

m

2
√

m2 − 1
− 1

2

(
1 +

m√
m2 − 1

)
= m2 − 1.

�

Remark. The smallest values of m, n which do not satisfy the conditions in theorem 2.3 are
m = 3 and n = 26. For these values, the proof in theorem 2.3 does not work because s2 < 0.
In this case, the question about the exact value of B̃�(m, n) is still open.

Proof of theorem 2.4. Suppose m = n. Then, the matrix ρ constructed in the proof of
theorem 2.3 has the form

ρ = 1

n(n + 1)
(In2 + xxt ),

where

xi =
{

1 if i = k(n + 1) + 1 for some 0 � k � n − 1,

0 otherwise.

It follows from [13] that ρ is separable. �

4. Conclusion

The main goal of this paper is to investigate the open problems (P1) and (P2) proposed in [10] in
the search for a new criterion for separability. We study the singular values of the realignment
of density matrices and obtain new bounds on the elementary symmetric functions. The results
are applied to find explicit formulas for B̃�(m, n), for all n � m, except m3 − m/2 < n < m3

and B�(n, n). This provides a partial answer to the open problem (P1). Furthermore, we show
that B̃�(n, n) = B�(n, n) for all n so that one cannot use B̃�(m, n) to differentiate separable
matrices from density matrices whose realignment matrix has trace norm at most 1 when
m = n. This gives a negative answer to problem (P2) when m = n. For m 
= n, numerical
results in [10] suggested that B̃�(m, n) > B�(m, n). If this strict inequality holds, then we
would have a new criterion for separability. Our explicit formula for B̃�(m, n) will be useful
in this study.

7
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