286 research outputs found

    The Validation and Assessment of Machine Learning: A Game of Prediction from High-Dimensional Data

    Get PDF
    In applied statistics, tools from machine learning are popular for analyzing complex and high-dimensional data. However, few theoretical results are available that could guide to the appropriate machine learning tool in a new application. Initial development of an overall strategy thus often implies that multiple methods are tested and compared on the same set of data. This is particularly difficult in situations that are prone to over-fitting where the number of subjects is low compared to the number of potential predictors. The article presents a game which provides some grounds for conducting a fair model comparison. Each player selects a modeling strategy for predicting individual response from potential predictors. A strictly proper scoring rule, bootstrap cross-validation, and a set of rules are used to make the results obtained with different strategies comparable. To illustrate the ideas, the game is applied to data from the Nugenob Study where the aim is to predict the fat oxidation capacity based on conventional factors and high-dimensional metabolomics data. Three players have chosen to use support vector machines, LASSO, and random forests, respectively

    MetaRanker 2.0: a web server for prioritization of genetic variation data

    Get PDF
    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein–protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0

    Macrophages and Adipocytes in Human Obesity: Adipose Tissue Gene Expression and Insulin Sensitivity During Calorie Restriction and Weight Stabilization

    Get PDF
    International audienceOBJECTIVE: We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS: Twenty-two obese women followed a dietary intervention program composed of an energy restriction phase with a 4-week very-low-calorie diet and a weight stabilization period composed of a 2-month low-calorie diet followed by 3-4 months of a weight maintenance diet. At each time point, a euglycemic-hyperinsulinemic clamp and subcutaneous adipose tissue biopsies were performed. Adipose tissue gene expression profiling was performed using a DNA microarray in a subgroup of eight women. RT-quantitative PCR was used for determination of mRNA levels of 31 adipose tissue macrophage markers (n = 22). RESULTS: Body weight, fat mass, and C-reactive protein level decreased and glucose disposal rate increased during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary intervention. The second comprised 511 mainly macrophage genes involved in inflammatory pathways that were not changed or upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. Accordingly, macrophage markers were upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. The increase in glucose disposal rates in each dietary phase was associated with variation in expression of sets of 80-110 genes that differed among energy restriction, weight stabilization, and dietary intervention. CONCLUSIONS: Adipose tissue macrophages and adipocytes show distinct patterns of gene regulation and association with insulin sensitivity during the various phases of a dietary weight loss program

    A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation

    Get PDF
    Background Testicular dysgenesis syndrome (TDS) is a common disease that links testicular germ cell cancer, cryptorchidism and some cases of hypospadias and male infertility with impaired development of the testis. The incidence of these disorders has increased over the last few decades, and testicular cancer now affects 1% of the Danish and Norwegian male population. Methods To identify genetic variants that span the four TDS phenotypes, the authors performed a genome-wide association study (GWAS) using Affymetrix Human SNP Array 6.0 to screen 488 patients with symptoms of TDS and 439 selected controls with excellent reproductive health. Furthermore, they developed a novel integrative method that combines GWAS data with other TDS-relevant data types and identified additional TDS markers. The most significant findings were replicated in an independent cohort of 671 Nordic men. Results Markers located in the region of TGFBR3 and BMP7 showed association with all TDS phenotypes in both the discovery and replication cohorts. An immunohistochemistry investigation confirmed the presence of transforming growth factor beta receptor type III (TGFBR3) in peritubular and Leydig cells, in both fetal and adult testis. Single-nucleotide polymorphisms in the KITLG gene showed significant associations, but only with testicular cancer. Conclusions The association of single-nucleotide polymorphisms in the TGFBR3 and BMP7 genes, which belong to the transforming growth factor b signalling pathway, suggests a role for this pathway in the pathogenesis of TDS. Integrating data from multiple layers can highlight findings in GWAS that are biologically relevant despite having border significance at currently accepted statistical levels

    Shared genetic variants suggest common pathways in allergy and autoimmune diseases.

    Get PDF
    BACKGROUND: The relationship between allergy and autoimmune disorders is complex and poorly understood. OBJECTIVE: To investigate commonalities in genetic loci and pathways between allergy and autoimmune diseases to elucidate shared disease mechanisms. METHODS: We meta-analyzed two GWAS on self-reported allergy and sensitization comprising a total of 62,330 individuals. These results were used to calculate enrichment for SNPs previously associated with autoimmune diseases. Furthermore, we probed for enrichment within genetic pathways and of transcription factor binding sites, and characterized commonalities in the variant burden on tissue-specific regulatory sites by calculating the enrichment of allergy SNPs falling in gene regulatory regions in various cells using Encode Roadmap DHS data, and compared the allergy data with all known diseases. RESULTS: Among 290 loci previously associated with 16 autoimmune diseases, we found a significant enrichment of loci also associated with allergy (p=1.4e-17) encompassing 29 loci at a false discovery rate<0.05. Such enrichment seemed to be a general characteristic for all autoimmune diseases. Among the common loci, 48% had the same direction of effect for allergy and autoimmune diseases. Additionally, we observed an enrichment of allergy SNPs falling within immune pathways and regions of chromatin accessible in immune cells that was also represented in autoimmune diseases, but not in other diseases. CONCLUSION: We identified shared susceptibility loci and commonalities in pathways between allergy and autoimmune diseases, suggesting shared diseases mechanisms. Further studies of these shared genetic mechanisms might help understanding the complex relationship between these diseases, including the parallel increase in disease prevalence

    Fatness-Associated FTO Gene Variant Increases Mortality Independent of Fatness – in Cohorts of Danish Men

    Get PDF
    The A-allele of the single nucleotide polymorphism (SNP), rs9939609, in the FTO gene is associated with increased fatness. We hypothesized that the SNP is associated with morbidity and mortality through the effect on fatness.In a population of 362,200 Danish young men, examined for military service between 1943 and 1977, all obese (BMI>or=31.0 kg/m(2)) and a random 1% sample of the others were identified. In 1992-94, at an average age of 46 years, 752 of the obese and 876 of the others were re-examined, including measurements of weight, fat mass, height, and waist circumference, and DNA sampling. Hospitalization and death occurring during the following median 13.5 years were ascertained by linkage to national registers. Cox regression analyses were performed using a dominant effect model (TT vs. TA or AA). In total 205 men died. Mortality was 42% lower (p = 0.001) with the TT genotype than in A-allele carriers. This phenomenon was observed in both the obese and the randomly sampled cohort when analysed separately. Adjustment for fatness covariates attenuated the association only slightly. Exploratory analyses of cause-specific mortality and morbidity prior to death suggested a general protective effect of the TT genotype, whereas there were only weak associations with disease incidence, except for diseases of the nervous system.Independent of fatness, the A-allele of the FTO SNP appears to increase mortality of a magnitude similar to smoking, but without a particular underlying disease pattern barring an increase in the risk of diseases of the nervous system
    corecore