3 research outputs found

    Distance-Based Analysis of Variance for Brain Connectivity

    Get PDF
    The field of neuroimaging dedicated to mapping connections in the brain is increasingly being recognized as key for understanding neurodevelopment and pathology. Networks of these connections are quantitatively represented using complex structures including matrices, functions, and graphs, which require specialized statistical techniques for estimation and inference about developmental and disorder-related changes. Unfortunately, classical statistical testing procedures are not well suited to high-dimensional testing problems. In the context of global or regional tests for differences in neuroimaging data, traditional analysis of variance (ANOVA) is not directly applicable without first summarizing the data into univariate or low-dimensional features, a process that may mask salient features of the high-dimensional distributions. In this work, we consider a general framework for two-sample testing of complex structures by studying generalized within- and between-group variances based on distances between complex and potentially high-dimensional observations. We derive an asymptotic approximation to the null distribution of the ANOVA test statistic, and conduct simulation studies with scalar and graph outcomes to study finite sample properties of the test. Finally, we apply our test to our motivating study of structural connectivity in autism spectrum disorder

    Disentangling Heterogeneity in Alzheimer's Disease and Related Dementias Using Data-Driven Methods

    No full text
    Brain aging is a complex process that includes atrophy, vascular injury, and a variety of age-associated neurodegenerative pathologies, together determining an individual’s course of cognitive decline. While Alzheimer's disease and related dementias contribute to the heterogeneity of brain aging, these conditions themselves are also heterogeneous in their clinical presentation, progression, and pattern of neural injury. We reviewed studies that leveraged data-driven approaches to examining heterogeneity in Alzheimer's disease and related dementias, with a principal focus on neuroimaging studies exploring subtypes of regional neurodegeneration patterns. Over the past decade, the steadily increasing wealth of clinical, neuroimaging, and molecular biomarker information collected within large-scale observational cohort studies has allowed for a richer understanding of the variability of disease expression within the aging and Alzheimer's disease and related dementias continuum. Moreover, the availability of these large-scale datasets has supported the development and increasing application of clustering techniques for studying disease heterogeneity in a data-driven manner. In particular, data-driven studies have led to new discoveries of previously unappreciated disease subtypes characterized by distinct neuroimaging patterns of regional neurodegeneration, which are paralleled by heterogeneous profiles of pathological, clinical, and molecular biomarker characteristics. Incorporating these findings into novel frameworks for more differentiated disease stratification holds great promise for improving individualized diagnosis and prognosis of expected clinical progression, and provides opportunities for development of precision medicine approaches for therapeutic intervention. We conclude with an account of the principal challenges associated with data-driven heterogeneity analyses and outline avenues for future developments in the field.This work was supported in part by the Allen H. and Selma W. Berkman Charitable Trust (Accelerating Research on Vascular Dementia) and National Institutes of Health Grant Nos. 1RF1AG054409 (to MH, CD, DW), R01 HL127659-04S1 (to MH), AG057832 (to CM), AG054519 (to CM), AG055005 (to DW, MH, CM), and P30-AG010124 (to DW, MH, CM). MJG is supported by the “Miguel Servet” program [CP19/00031] of the Spanish Instituto de Salud Carlos III (ISCIII-FEDER)
    corecore