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Distance-Based Analysis of Variance for Brain
Connectivity

Russell T. Shinohara, Haochang Shou, Marco Carone, Robert Schultz, Birkan
Tunc, Drew Parker, and Ragini Verma

Abstract

The field of neuroimaging dedicated to mapping connections in the brain is in-
creasingly being recognized as key for understanding neurodevelopment and pathol-
ogy. Networks of these connections are quantitatively represented using com-
plex structures including matrices, functions, and graphs, which require special-
ized statistical techniques for estimation and inference about developmental and
disorder-related changes. Unfortunately, classical statistical testing procedures are
not well suited to high-dimensional testing problems. In the context of global or
regional tests for differences in neuroimaging data, traditional analysis of variance
(ANOVA) is not directly applicable without first summarizing the data into uni-
variate or low-dimensional features, a process that may mask salient features of
the high-dimensional distributions. In this work, we consider a general framework
for two-sample testing of complex structures by studying generalized within- and
between-group variances based on distances between complex and potentially
high-dimensional observations. We derive an asymptotic approximation to the
null distribution of the ANOVA test statistic, and conduct simulation studies with
scalar and graph outcomes to study finite sample properties of the test. Finally, we
apply our test to our motivating study of structural connectivity in autism spectrum
disorder.
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Abstract

The field of neuroimaging dedicated to mapping connections in the brain is increas-
ingly being recognized as key for understanding neurodevelopment and pathology. Net-
works of these connections are quantitatively represented using complex structures in-
cluding matrices, functions, and graphs, which require specialized statistical techniques
for estimation and inference about developmental and disorder-related changes. Unfor-
tunately, classical statistical testing procedures are not well suited to high-dimensional
testing problems. In the context of global or regional tests for differences in neuroimag-
ing data, traditional analysis of variance (ANOVA) is not directly applicable without
first summarizing the data into univariate or low-dimensional features, a process that
may mask salient features of the high-dimensional distributions. In this work, we con-
sider a general framework for two-sample testing of complex structures by studying
generalized within- and between-group variances based on distances between complex
and potentially high-dimensional observations. We derive an asymptotic approximation
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to the null distribution of the ANOVA test statistic, and conduct simulation studies
with scalar and graph outcomes to study finite sample properties of the test. Finally,
we apply our test to our motivating study of structural connectivity in autism spectrum
disorder.

Keywords: Biostatistics, neuroimaging, distance statistics, kernel ANOVA.

2

http://biostats.bepress.com/upennbiostat/art48



1 Introduction

Connectomics, the field of neuroimaging dedicated to mapping connections in the brain,

is increasingly being recognized as key for understanding neurodevelopment. As the brain

develops, it becomes a complex system with many interconnected networks that coactivate.

Complementary imaging modalities provide insight into the structural and functional net-

works of the brain. Structural networks exist as physically connected regions of the brain,

and functional networks are groups of regions that tend to function together. The study

of these complex networks is crucial for developing cognitive and pharmaceutical therapies

for treating psychiatric, neurological, and developmental disorders. Quantitatively, these

networks are often represented using complex structures including matrices, functions, and

graphs, and require specialized statistical techniques for estimation and inference about

developmental and disorder-related changes.

Principled statistical methods are necessary for analyzing these structures due to the

scale of their dimensionality, as simplistic connection-wise methods are hindered in power

by the need for multiple comparison correction. Unfortunately, classical statistical testing

procedures are not well suited to high-dimensional testing problems. In the context of

global or regional tests for differences in neuroimaging data, traditional analysis of variance

(ANOVA) is not directly applicable without first summarizing the data into univariate or

low-dimensional features, a process that may mask salient features of the high-dimensional

distributions. Direct statistical inference on the imaging objects is fundamentally hindered

by the lack of a precise definition of variance in high-dimensional data, which in turn ham-

pers the comparison of within- to between-group variability. In this paper, we propose a

general framework for two-sample testing of complex structures by studying generalized

within- and between-group variances based on distances between high-dimensional obser-

vations.

The methods we propose are closely related to the fields of distance statistics and ker-

nel testing, which have been shown to be equivalent in many cases (Sejdinovic et al. 2013).

Similarly to our proposed methodology, both of these literatures center on the reduction of

the observed data using a distance (or kernel) to describe the dissimilarity between subjects.

Kernel tests have been used extensively in statistical genetics, and were pioneered in associ-

ation studies by Kwee et al. (2008). These score-based tests, which use the high-dimensional

genetic data as predictors and scalar outcomes, have been used in the context of common
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and rare variant analyses (Wu et al. 2011, Ionita-Laza et al. 2013), and are recognized as

an important tool for the analysis of sequencing data. The limiting distribution of kernel

test statistics is well understood (Zhang & Lin 2003). Another approach in genetic analyses

involves sum tests (Wang & Elston 2007, Pan 2009), which are based on the assumption

that all genetic predictors have the same association with the outcome, and sum tests study

this common association parameter using weighted sums of the predictors. More recently,

much work has centered on developing versions of these tests that adaptively choose these

weights and combine kernels to optimize power (Lee et al. 2012, Ionita-Laza et al. 2013,

Pan et al. 2014, Zhao et al. 2015) to detect both sparse and dense alternatives. While both

kernel and sum tests benefit from the convenience of linear model specification for the sake

of adjusting for confounding variables, their performance under model misspecification is

not well understood. Finally, distance correlation (Székely et al. 2007, 2009) is an alternate

measure of multivariate dependence for high-dimensional random vectors. Leveraging a dis-

tance measure to generalize Pearson correlation, distance correlation provides a means for

assessing nonlinear complex correlations and testing independence. Distance correlation,

which was proposed for the Euclidean random vector observation case, has also been shown

to be related to kernel-based maximum mean discrepancy tests popular in the machine

learning literature (Sejdinovic et al. 2013).

For two-sample testing in higher dimensions, distance-based ANOVA considers the par-

titioning of sums of squared distances between subjects. Although pioneered in the ecology

literature (McArdle & Anderson 2001), distance-based ANOVA is increasingly being used

in genomics (Minas et al. 2011) and neuroimaging (Reiss et al. 2010). This approach uses

a pseudo-F statistic that assesses the ratio of the within-group distances to the between-

group distances. Unfortunately, the null distribution of this test statistic is not easily

approximated and thus inference has been based solely on Monte Carlo approximations

of the permutation distribution (PERMANOVA). This is computationally intensive and

suboptimal in terms of statistical power. The potential inefficiency of permutation-based

testing stems from the flexible estimation strategy for the null distribution. Recent work

by Minas & Montana (2014) developed an analytical approximation to the permutation

null distribution which promises much improved computational time with similar power.

While PERMANOVA tests are closely related to distance correlation under specific choices

of distance functions in the case of random vectors, their extension to the case of more

complex outcome structures has not yet been formalized. In the remainder of this paper,
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we propose an analytical approach for testing for differences in the distribution of com-

plex structures leveraging the PERMANOVA framework. In the next section, we describe

this test in detail and derive its limiting distribution. In Section 3, we conduct simulation

analyses in two different setting: one with a scalar outcome, and another with a graphical

outcome. Finally, we consider the motivating study of structural connectivity in the brains

of subjects with autism spectrum disorders and conclude with a discussion.

2 Proposed methodology

For a prototypical patient, the data unit is X := (M,D), where M is an object in some

space M and D ∈ {0, 1, . . . ,K − 1} is a disease group indicator. Denote by P0 the true

distribution of X. Suppose that r : M ×M → [0,+∞) is a symmetric discrepancy func-

tion that quantifies in some scientific context-dependent manner how dissimilar two given

objects in M are. Suppose that we observe n independent draws X1 := (M1, D1), X2 :=

(M2, D2), . . . , Xn := (Mn, Dn) from P0 – each of these correspond to measurements taken

on a different patient.

Our goal is to use the available data to determine whether the distribution of M is the

same across all subpopulations defined by D. This corresponds to the null hypothesis H0

whereinM andD are independent under P0. To test this hypothesis, we will use the classical

partitioning of variation approach from the standard ANOVA setting. A central quantity

in the developments to follow is the r−variance of a population of objects M ∈M with dis-

tribution P , defined as σ2(P ) := EP×P {r(M1,M2)} =
∫∫

r(m1,m2)dP (m1)dP (m2). This

generalized variance based on the marginal distribution of P0 can be estimated consistently

using the U -statistic

σ2n :=

(
n

2

)−1∑
i<j

r(Mi,Mj) .

This definition for the variance of an object is particularly convenient because it generalizes

the usual notion of variance in an interpretable fashion and its natural U -statistic estimator

lends itself to relatively simple theoretical analysis. We note that although the computation

of the above sum may be burdensome in large samples, a Monte Carlo approximation

based on randomly sampling pairs of subjects can easily be used. We wish to construct

an ANOVA-like test statistic using r-variance. Denoting by P0∗ and P0k, respectively, the

5
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marginal distribution of M and the conditional distribution of M given D = k implied by

P0, and by π0k the marginal probability that D = k under P0, we observe that the ANOVA

discrepancy

T (P0) :=
σ2(P0∗)−

∑K−1
k=0 π0kσ

2(P0k)∑K−1
k=0 π0kσ

2(P0k)

is identically zero under H0. A sample version of this discrepancy based on U -statistics can

be used as the test statistic. To construct this statistic, we define the within-group sum of

squared distances as

SSEn :=
K−1∑
k=0

(nk − 1)

(
nk
2

)−1∑
i<j

r(Mi,Mj)I(Di = Dj = k)

and the total sum of squared distances SSn := (n − 1)
(
n
2

)−1∑
i<j r(Mi,Mj), where we

set nk :=
∑

i I(Di = k). The scaled quantities SSEn/n and SSn/n are nonparametric

estimators of
∑K−1

k=0 π0kσ
2(P0k) and σ2(P0∗), respectively. The difference SSTn := SSn −

SSEn corresponds to an analogue of the between-group sum of squares. An empirical

version of T (P0) is given by

Tn :=
1

n
·
(
SSTn
K − 1

)/(SSEn

n−K

)
,

which can be seen as a scaled F -like test statistic. The unscaled counterpart of this statis-

tic, Qn := nTn, is known as the distance-based pseudo-F statistic. It was first proposed

by Anderson (1963), who noted that it reduces to the classical ANOVA F -test in the

scalar Euclidean case. However, in the general case the test statistic does not follow an F

distribution, and Anderson (1963) suggested randomly permuting the group labels Di to

approximate sampling from the null distribution. Minas et al. (2011) suggested a similar

statistic with different degrees of freedom in the numerator and denominator. Recently,

Minas & Montana (2014) developed a Pearson type III approximation for the permutation

distribution of the F -statistic, which significantly reduces the computational burden of test-

ing. These methods all potentially suffer from a loss of power from the permutation-based

approximation – using simulations, we investigate this phenomenon in Section 3. When

M is a random vector in Rp and r is the Euclidean norm, the numerator of the proposed

pseudo-F statistic is closely related to the empirical distance covariance (Székely et al. 2009)

between M and D observations, which is a weighted combination of the average within- and
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between-group distances. However, for more complex structures such as those of interest

in connectomics, the ability to use more general distance functions and to accommodate

complex data objects is crucial.

Large positive values of the test statistic Qn are incompatible with the null hypothesis

of independence between M and D. To determine appropriate test cutoffs to use in prac-

tice, we require a better understanding of the distribution of Qn under the null hypothesis.

The U -statistic form of the sample d−variance can be leveraged to obtain a distributional

approximation to the various building blocks of the pseudo-F statistic under the null hy-

pothesis. We begin by studying the large-sample behavior of both SSEn and SSTn. To

simplify the presentation, we will only explicitly consider the case K = 2 hereon, although

all results to follow can be easily generalized for arbitrary K ∈ N. Below, we denote by π0

the probability P0(D = 1).

Theorem. Suppose that σ20 < +∞, that M and D are independent, and that π0 ∈ (0, 1).

Then, SSEn/n tends to σ20 in probability and

SSTn − σ20 − n ·
(
n

2

)−1∑
i<j

u(Mi,Mj)

tends to zero in probability for some first-order non-degenerate kernel u. As such, in large

samples, the distribution of SSTn is approximated by that of the infinite series

σ20 +

∞∑
j=1

λj
(
Z2
j − 1

)
,

where Z1, Z2, . . . are independent standard normal variates and λ1, λ2, . . . are eigenvalues

of the operator that maps any given function g into m 7→
∫
u(m,m2)g(m2)dP (m2).

Using this description of the behavior of the key building blocks of the pseudo-F statistic

Qn, we are able to describe the large-sample properties of the latter.

Corollary. Suppose that σ20 < +∞, that M and D are independent, and that π0 ∈ (0, 1).

We then have that Qn tends in distribution to

Z∗ := 1 + σ−20

∞∑
j=1

λj
(
Z2
j − 1

)
,

where Z1, Z2, . . . are independent standard normal variates and λ1, λ2, . . . are eigenvalues
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described in the above theorem.

We note that this result provides an asymptotic approximation to the null distribution of

Qn without any restriction on the complexity of the structure of M except for the symmetry

of the discrepancy r. Furthermore, estimates of the eigenvalues λ1, λ2, . . . can be computed

in a relatively straightforward fashion by calculating the eigenvalues of the kernel matrix

Hn defined to have (i, j)th element Hn,ij := u(Xi, Xj). While somewhat complicated,

the exact form of u(Xj , Xk) is provided in the Supplementary Materials. Once estimates

λ1,n, λ2,n, . . . of the eigenvalues λ1, λ2, . . . have been obtained, the 95th percentile of Z∗ can

be approximated by the sample 95th percentile of the collectionZ∗q,J := 1 + σ−2n

J∑
j=1

λj,n
(
Z2
j,q − 1

)
: q = 1, 2, . . . , Q


for both J and Q very large, πn := n1/n and {Zj,q}j,q a matrix of independent standard

normal variates, thereby enabling the construction of an asymptotically valid test cutoff.

3 Simulation studies

To assess the performance of our proposed test, we considered two simulations scenarios.

The first is the simple scalar ANOVA case with two groups. That is, we repeatedly (B =

1000 times) sample subjects i = 1, . . . , n, with group indicator Di ∼ Bern(0.5) and outcome

Mi ∼ N(Di, σ
2) for various values of n and σ2. We then conduct traditional ANOVA as

well as distance-based AVOVA using two distance functions: the squared Euclidean distance

d1(Mj ,Mk) = (Mj −Mk)2/2, and the absolute distance d2(Mj ,Mk) = |Mj −Mk|/2. The

results are shown in Table 1. The power of the distance-based ANOVAs were slightly

lower than the standard ANOVA, with the Euclidean distance-based ANOVA showing very

similar power to the classical test. The absolute distance-based test showed the lowest

power, with a loss of up to 15%. All type 1 error rates were around the nominal 5% level,

and are shown in a table in Table A2.

We next considered a simple graph-outcome case, with five common nodes labeled A

through E in each subject and variation in the presence or absence of edges between the

nodes as illustrated in Figure 2. We fixed τ1 = 5% and simulated B = 1000 datasets for

various values of n and τ1, and used the number of edge disagreements as the distance func-
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Figure 1: Power (%) estimated using squared Euclidean and absolute distance-based
ANOVA in the scalar case, along with the classical ANOVA test. Note the estimated
power of the standard ANOVA is highest as expected, and is quite similar to the Euclidean
d1-ANOVA. The absolute d2-ANOVA shows slightly lower power.
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
1 1 1− τDi τDi τDi

1 1 τDi τDi τDi

1− τDi τDi 1 1 1
τDi τDi 1 1 1
τDi τDi 1 1 1


Figure 2: Graph-outcome simulation design. On the left, the adjacency matrix for the
simulated graphs is shown, and on the right three example subjects are shown with τ1 = 5%
and τ2 = 10%.

tion between any two subjects. To compare this with the state-of-the-art PERMANOVA

approach, we used the adonis function in the vegan package (Oksanen et al. 2015) in R (R

Core Team 2015) and the results are shown in Table 3. In all cases, the type I error rate

was estimated to be less than the nominal 5% rate but the tests were conservative (type I

error rate around 1-2%) for the n = 30 and n = 50 cases (see Supplementary Materials).

Note that the PERMANOVA approach yielded very low power in most cases, whereas the

proposed distance-based test showed high power for larger sample sizes and effect sizes.

4 Results from the Autism study

In order to study the effect of autism on structural connectivity, we used diffusion tensor

imaging (DTI) on 264 subjects aged 6 to 19 including 144 subjects with autism spectrum

disorders (ASD) and 120 typically developing controls (TDC). Diagnoses were confirmed

using expert consensus by two independent psychologists following the guidelines set by

Collaborative Programs of Excellence in Autism (CPEA). 30-direction DTI were acquired

and quality assured following de-noising and brain extraction, and a tensor model was fit

to identify the direction of water diffusion across the brain. The brain was segmented

into 301 regions using a co-registered T1-weighted image, and FSL probtrackx (Behrens

et al. 2003) was used to estimated the degree of structural connectivity between each of

the 301 regions accounting for the volume of each region. The observed data for each

subject were thus symmetric 301 by 301 connectivity matrices, with (i, j)-th entry being a

measure of the strength of connection between regions i and j. Figure (4) shows network

representation of connectivity matrices, with nodes representing regions and edges being

weighted by connection strength for two subjects for illustration.
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Figure 3: Estimated power (%) from simulations with graph outcomes distributed using the
adjacency matrix shown in Figure 2. Note that the permutational ANOVA has no power
for the τ2 = 10% and 15% cases and very low power for sample sizes smaller than n = 500
for the τ2 = 20% case. The proposed test, on the other hand, shows much higher power in
all cases for all sample sizes.
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Example - 14-year-old subject with ASD

Example - 17-year-old typically developing subject

Figure 4: Observed data for two selected subjects, consisting of volume-normalized counts
of streamline connections between each pair of regions. Regions are represented spatially
in sagittal, coronal, and axial views as red dots, and blue lines are connections. Darker and
wider blue lines indicate stronger connections between regions.
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ASDTypically Developing Di�erence

<12.2 years old >12.2 years old Di�erence

Figure 5: Mean networks (first and second columns) for ASD versus TDC subjects and
absolute difference (top), and for subjects younger than the median age (12.2 years) com-
pared to older (bottom). Regions are represented as red dots, and connections are shown
in blue lines. Darker and thicker lines indicate stronger connections on average between
regions. In the third column, the differences between the maps are shown, with gray lines
indicating similar strength of connections in ASD (top) and older (bottom) subjects. Blue
lines indicate stronger connections in ASD/older subjects, and yellow lines indicate weaker
connections in these groups.
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Our experiment included two comparisons which we accomplished using both the pro-

posed test and the traditional permutational ANOVA: first, we tested for differences be-

tween the ASD and TDC groups. This difference is likely to be small, and thus our power

to detect a global group difference is low. The mean connectivity matrices for the TDC

and ASD groups are shown in Figure (4), and appear visually quite similar. Indeed, neither

the proposed test (p = 0.45) nor PERMANOVA (p = 0.36) rejected the null of no differ-

ence between groups, likely due to the small effect size, relatively small sample size, and

the global nature of the discrepancy measure selected. To assess the performance of our

proposed test in the presence of stronger signal, we also examined differences associated

with age-related development by dichotomizing age by its median across all subjects (12.2

years), and the average connectivity matrices in the younger and older groups are shown in

the bottom row of Figure (4). Both the proposed test (p = 0.004) and the PERMANOVA

(p = 0.006) indicated a significant difference in structural connectivity associated with age.

This shows the promise for the proposed method for detecting structural changes in the

connectome despite the high dimensionality of the connectomic representation.

5 Conclusion

In this paper, we propose a distance-based analysis of variance technique that allows for

fast two-sample testing of connectomes represented by graphs and more complex structures

using a subject-to-subject distance or discrepancy measure. We leverage the U -statistic

form of the generalized variances studies to find the limiting behavior of the pseudo-F

statistic. Our test shows improved power in simulations while maintaining nominal type

one error rates. We expect that this test will also be useful in large genomic studies and

other biomedical big data settings, in which permutational ANOVA testing are increasingly

popular.

We demonstrate the utility of this methodology in a modern connectivity study. As

ASD is an elusive disease in which only certain networks are affected, a global test using

structural connectivity measures alone may not be most informative nor powerful. Fu-

ture investigations of ASD using connectivity measures for certain functional systems, and

targeted comparisons in pre-specified brain networks will likely be more fruitful for un-

derstanding disorder-related dysconnectivity. The proposed testing methodology may be

useful for such scenarios, in combination with other approaches that include appropriate
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dimension reduction. Additionally, to study global connectivity differences such as those

attributable to age, the proposed test is promising for examining group differences.
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SUPPLEMENTARY MATERIAL

ADDITIONAL SIMULATION RESULTS

PPPPPPPPPDistance
n

30 50 100 500

Euclidean r 2 5 4 6
Absolute r 3 4 3 4

Table A1: Type 1 error rates (%) for scalar simulation scenario. Rows indicate different
hypothesis tests and columns corresponding to various sample sizes.

H
HHH

HHτ2

n
30 50 100 500

0.1 1 1 3 4
0.15 1 2 3 4
0.2 2 2 4 5

Table A2: Type 1 error rates (%) for graph simulation scenario. Rows indicate different
values for the parameter τ2, and columns corresponding to various sample sizes.
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Technical proofs

We begin by establishing a result on the asymptotic behavior of the product of the

estimation error of two asymptotically linear estimators. Specifically, let θ1 and θ2 be two

parameters, and denote by θ10 and θ20 their respective true values. Suppose that θ̂1n and

θ̂2n are asymptotically linear estimators of θ10 and θ20, respectively, with influence functions

φ10 and φ20.

Lemma. The mapping h : (u, v) 7→ 1
2 {φ10(u)φ20(v) + φ10(v)φ20(u)} is a first-order degen-

erate kernel, and furthermore,

n(θ̂1n − θ10)(θ̂2n − θ20) = E0 {φ10(X)φ20(X)}+ nUn + oP (1) ,

where Un is a U -statistic with kernel h. Additionally, it holds that

∫∫∫
f(x1, x2)h(x1, x3)dP0(x1)dP0(x2)dP0(x3) = 0

for any function (x1, x2) 7→ f(x1, x2) such that
∫∫

f2(x1, x2)dP0(x1)dP0(x2) <∞.

Proof. In view of asymptotic linearity, we may write

(θ̂1n − θ10)(θ̂2n − θ20) =

{
1

n

n∑
i=1

φ10(Xi) + oP (n−1/2)

}{
1

n

n∑
i=1

φ20(Xi) + oP (n−1/2)

}

=
1

n2

n∑
i=1

n∑
j=1

φ10(Xi)φ20(Xj) +

{
1

n

n∑
i=1

φ10(Xi)

}
oP (n−1/2)

+

{
1

n

n∑
i=1

φ20(Xi)

}
oP (n−1/2) + oP (n−1)

and so, using the fact that both 1
n

∑n
i=1 φ10(Xi) and 1

n

∑n
i=1 φ20(Xi) are OP (n−1/2) by the

Central Limit Theorem,

n(θ̂1n − θ10)(θ̂2n − θ20) =
1

n

n∑
i=1

n∑
j=1

φ10(Xi)φ20(Xj) + oP (1) .

Furthermore, we can write

1

n

n∑
i=1

n∑
j=1

φ10(Xi)φ20(Xj)
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= n

(
n− 1

n

)(
n

2

)−1∑
i<j

h(Xi, Xj) +
1

n

n∑
i=1

φ10(Xi)φ20(Xi) + oP (1)

= nUn + E0 {φ10(X)φ20(X)}+ oP (1) .

Since E0 {φ10(X)} = E0 {φ20(X)} = 0, it follows that E0 {h(Xi, Xj)} = 0 for i 6= j and

furthermore that E0 {h(X1, X2)h(X1, X3)} = 0. Finally, it is straightforward to verify that

E0 {f(X1, X2)h(X1, X3)} = 0 for an arbitrary function (x1, x2) 7→ f(x1, x2).

We now establish the validity of our main theorem and its corollary.

Proof of Theorem. The weak consistency of SSEn/n to σ20 is a consequence of the weak

law of large numbers for U-statistics. Using the fact that SSTn = SSn−SSEn, we observe

that we may represent SSTn as

(n− 1)

(
n

2

)−1∑
j<k

r(Mj ,Mk)−
1∑

r=0

(nr − 1)

(
nr
2

)−1∑
j<k

r(Mj ,Mk)I(Dj = Dk = r)

=
2

n

∑
j<k

r(Mj ,Mk)

{
1− I(Dj = Dk = 0)

1− π0
− I(Dj = Dk = 1)

π0

}

− 2

n

∑
j<k

r(Mj ,Mk)

[(
n

n0
− 1

1− π0

)
I(Dj = Dk = 0) +

(
n

n1
− 1

π0

)
I(Dj = Dk = 1)

]
= A1n −A2n −A3n −A4n + oP (1) ,

where we have defined the summands

A1n := n ·
(
n

2

)−1∑
j<k

r(Mj ,Mk)

{
1− I(Dj = Dk = 0)

1− π0
− I(Dj = Dk = 1)

π0

}

A2n := n ·
(
n

n0
− 1

1− π0

)(
n

2

)−1∑
j<k

{
r(Mj ,Mk)I(Dj = Dk = 0)− (1− π0)2σ20

}
A3n := n ·

(
n

n1
− 1

π0

)(
n

2

)−1∑
j<k

{
r(Mj ,Mk)I(Dj = Dk = 1)− π20σ20

}
A4n := n ·

(
n

n0
− 1

1− π0

)
(1− π0)2σ20 + n ·

(
n

n1
− 1

π0

)
π20σ

2
0 .

We now analyze each of the above four terms under the null hypothesis. The term A1n is

18
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an n-scaled U -statistic with first-order degenerate kernel h1 given by

(x1, x2) 7→ r(m1,m2)

{
1− I(d1 = d2 = 0)

1− π0
− I(d1 = d2 = 1)

π0

}
,

where x1 := (m1, d1) and x2 := (m2, d2) represent two arbitrary realizations of X. To study

the term A2n, we first note that

(
n

2

)−1∑
j<k

{
r(Mj ,Mk)I(Dj = Dk = 0)− (1− π0)2σ20

}
is a non-degenerate U -statistic with kernel (x1, x1) 7→ r(m1,m2){I(d1 = d2 = 0) − (1 −

π0)
2σ20}, and by the Hájek projection, it is asymptotically linear with influence function

x 7→ 2
[
E0 {r(M,m)I(D = d = 0)} − (1− π0)2σ20

]
= 2(1− π0)

[
I(d = 0)E0 {r(M,m)} − (1− π0)σ20

]
=: φ21(x) ,

where E0 {r(M,m)} is the average distance from m to a random draw from the distribution

of M . By the delta method, we have that

n

n0
− 1

1− π0
= (1− π0)−2

(n1
n
− π0

)
+ oP (n−1/2) =

1

n

n∑
i=1

φ22(Xi) + oP (n−1/2)

with φ22(x) := {I(d = 1) − π0}/(1 − π0)
2. By the Lemma, we can then write A2n =

B2 + nU2n + oP (1), where B2 := E0 {φ21(X)φ22(X)} = −2π0σ
2
0 and U2n is a first-order

degenerate U -statistic with kernel h2 : (x1, x2) 7→ {φ21(x1)φ22(x2) + φ21(x2)φ22(x1)} /2.

We can proceed similarly for the term A3n. Specifically, setting

φ31(x) := 2π0
[
I(d = 1)E0 {r(M,m)} − π0σ20

]
and φ32(x) := −π−20 {I(d = 1)− π0}, we find that A3n = B3 + nU3n + oP (1) with B3 :=

E0 {φ31(X)φ32(X)} = −2(1 − π0)σ20 and U3n is a first-order degenerate U -statistic with

kernel h3 : (x1, x2) 7→ {φ31(x1)φ32(x2) + φ31(x2)φ32(x1)} /2. Finally, we note that

A4n = σ20

(
n2

n0n1

){√
n
(n1
n
− π0

)}2
=

σ20
π0(1− π0)

{√
n
(n1
n
− π0

)}2
+ oP (1)

and therefore, by the Lemma, we readily find that A4n = B4 + nU4n + oP (1), where
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B4 := [σ20/{π0(1 − π0)}]E0 {I(D = 1)− π0}2 = σ20 and U4n is a first-order degenerate U -

statistic with kernel h4 : (x1, x2) 7→ [σ20/{π0(1− π0)}]{I(d1 = 1)− π0}{I(d2 = 1)− π0}. In

view of the above facts, we obtain that

SSTn = σ20 + n ·
(
n

2

)−1∑
j<k

u(Xj , Xk) + oP (1) ,

where u is the first-order degenerate kernel (x1, x2) 7→ h1(x1, x2) +h2(x1, x2) +h3(x1, x2) +

h4(x1, x2). It is easy to verify that Cov{f(X1, X2), hj(X1, X3)} = 0 for any f : R2 → R, and

so, in particular, we find that Cov{u(X1, X2), u(X1, X3)} = 0. It follows then that SSTn

tends in distribution to σ20 +
∑∞

j=1 λj(Z
2
j − 1) as n→∞, where Z1, Z2, . . . are independent

standard normal random variables and λ1, λ2, . . . are eigenvalues of the operator g 7→ Γ(g) :

m 7→
∫
u(m,m2)g(m2)dP (m2) (Lee 1990).

Proof of Corollary. Follows from the theorem by an application of Slutsky’s theorem.
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