10,807 research outputs found

    Rendez-vous of dwarfs

    Full text link
    We present observations of multiple system of dwarf galaxies at the Russian 6-m telescope and the GMRT (Giant Metrewave Radio Telescope). The optical observations are a part of the programme Study of Groups of Dwarf Galaxies in the Local Supercluster. The group of galaxies under consideration looks like filament of 5 dwarfs. Two faint galaxies show peculiar structure. Long slit spectrum reveals inner motions about 150 km/s in one of them. It suggests that the galaxy is on stage of ongoing interaction. Probably, we see the group in moment of its formation.Comment: 2 pages, 3 figures; to appear in the proceedings of the conference "A Universe of dwarf galaxies" (Lyon, June 14-18, 2010

    Cosmological fluctuation growth in bimetric MOND

    Full text link
    I look at the growth of weak density inhomogeneities of nonrelativistic matter, in bimetric-MOND (BIMOND) cosmology. I concentrate on matter-twin-matter-symmetric versions of BIMOND, and assume that, on average, the universe is symmetrically populated in the two sectors. MOND effects are absent in an exactly symmetric universe, apart from the appearance of a cosmological constant, Lambda~(a0/c)^2. MOND effects-local and cosmological-do enter when density inhomogeneities that differ in the two sectors appear and develop. MOND later takes its standard form in systems that are islands dominated by pure matter. I derive the nonrelativistic equations governing small-scale fluctuation growth. The equations split into two uncoupled systems, one for the sum, the other for the difference, of the fluctuations in the two sectors. The former is governed strictly by Newtonian dynamics. The latter is governed by MOND dynamics, which entails stronger gravity, and nonlinearity even for the smallest of perturbations. These cause the difference to grow faster than the sum, conducing to matter-twin-matter segregation. The nonlinearity also causes interaction between nested perturbations on different scales. Because matter and twin matter (TM) repel each other in the MOND regime, matter inhomogeneities grow not only by their own self gravity, but also through shepherding by flanking TM overdensitie. The relative importance of gravity and pressure in the MOND system depends also on the strength of the perturbation. The development of structure in the universe, in either sector, thus depends crucially on two initial fluctuation spectra: that of matter alone and that of the matter-TM difference. I also discuss the back reaction on cosmology of BIMOND effects that appear as "phantom matter" resulting from inhomogeneity differences between the two sectors.Comment: 14 pages. Some clarifications added. Version published in Phys. Rev.

    Observational biases in Lagrangian reconstructions of cosmic velocity fields

    Full text link
    Lagrangian reconstruction of large-scale peculiar velocity fields can be strongly affected by observational biases. We develop a thorough analysis of these systematic effects by relying on specially selected mock catalogues. For the purpose of this paper, we use the MAK reconstruction method, although any other Lagrangian reconstruction method should be sensitive to the same problems. We extensively study the uncertainty in the mass-to-light assignment due to luminosity incompleteness, and the poorly-determined relation between mass and luminosity. The impact of redshift distortion corrections is analyzed in the context of MAK and we check the importance of edge and finite-volume effects on the reconstructed velocities. Using three mock catalogues with different average densities, we also study the effect of cosmic variance. In particular, one of them presents the same global features as found in observational catalogues that extend to 80 Mpc/h scales. We give recipes, checked using the aforementioned mock catalogues, to handle these particular observational effects, after having introduced them into the mock catalogues so as to quantitatively mimic the most densely sampled currently available galaxy catalogue of the nearby universe. Once biases have been taken care of, the typical resulting error in reconstructed velocities is typically about a quarter of the overall velocity dispersion, and without significant bias. We finally model our reconstruction errors to propose an improved Bayesian approach to measure Omega_m in an unbiased way by comparing the reconstructed velocities to the measured ones in distance space, even though they may be plagued by large errors. We show that, in the context of observational data, a nearly unbiased estimator of Omega_m may be built using MAK reconstruction.Comment: 29 pages, 21 figures, 6 tables, Accepted by MNRAS on 2007 October 2. Received 2007 September 30; in original form 2007 July 2

    The Balance of Dark and Luminous Mass in Rotating Galaxies

    Full text link
    A fine balance between dark and baryonic mass is observed in spiral galaxies. As the contribution of the baryons to the total rotation velocity increases, the contribution of the dark matter decreases by a compensating amount. This poses a fine-tuning problem for \LCDM galaxy formation models, and may point to new physics for dark matter particles or even a modification of gravity.Comment: 4 pages RevTeX. Phys. Rev. Letters, in pres

    Nilpotent normal form for divergence-free vector fields and volume-preserving maps

    Get PDF
    We study the normal forms for incompressible flows and maps in the neighborhood of an equilibrium or fixed point with a triple eigenvalue. We prove that when a divergence free vector field in R3\mathbb{R}^3 has nilpotent linearization with maximal Jordan block then, to arbitrary degree, coordinates can be chosen so that the nonlinear terms occur as a single function of two variables in the third component. The analogue for volume-preserving diffeomorphisms gives an optimal normal form in which the truncation of the normal form at any degree gives an exactly volume-preserving map whose inverse is also polynomial inverse with the same degree.Comment: laTeX, 20 pages, 1 figur

    The vertical disk structure of the edge-on spiral galaxy NGC 3079

    Get PDF
    NGC 3079 is an edge-on SB(s)c galaxy at a redshift of 1225 km/s relative to the Local Group. Earlier researchers found a spectacular 'figure-eight' radio structure aligned along the minor axis of the galaxy, centered on the nucleus, and extending 3 kpc above and below the plane. The geometry of this structure and the evidence of unusually high nuclear gas velocities suggest that a wind-type outflow from the nucleus is taking place. The disk of NGC 3079 is also remarkable: it is extremely rich in H 2 regions and is the only unambiguous example of a galaxy outside M31 and our own Galaxy to exhibit 'Heiles-like' shells. Other researchers have also identified a nebulosity with a ragged X-shaped morphology formed by a system of lumpy filaments with individual lengths of 3 - 5 kpc. They suggest that this material is ambient halo gas entrained into the boundary layers of the nuclear outflow. The complex structure of the line emission in NGC 3079 makes this object an ideal target for an imaging spectroscopic study. The present paper reports the preliminary results of such a study

    The spacetime structure of MOND with Tully-Fisher relation and Lorentz invariance violation

    Full text link
    It is believed that the modification of Newtonian dynamics (MOND) is possible alternate for dark matter hypothesis. Although Bekenstein's TeVeS supplies a relativistic version of MOND, one may still wish a more concise covariant formulism of MOND. In this paper, within covariant geometrical framwork, we present another version of MOND. We show the spacetime structure of MOND with properties of Tully-Fisher relation and Lorentz invariance violation.Comment: 6 pages. arXiv admin note: substantial text overlap with arXiv:1111.1383 and arXiv:1108.344
    corecore