8 research outputs found

    THE STRATEGIC UTILITY OF SOF IN GREAT POWER COMPETITION: A NATO PERSPECTIVE

    Get PDF
    NATO needs to discuss whether, why, and how Special Operations Forces (SOF) contribute to the “fight” in Great Power Competition. NATO’s security strategy traditionally relies on a deterrence posture with conventional and nuclear capabilities. The new NATO 2022 Strategic Concept validates the necessity to research the question: What is the strategic utility of SOF for NATO in Great Power Competition, and how can this strategic utility be enhanced? This study uses a qualitative methodology. At the core is a comparative analysis of two scenarios in the Black Sea and Arctic regions, both developed through a systematic process and enriched with imagination to contain useful vignettes. The analysis suggests that SOF have strategic utility, albeit in changing manifestations in different phases of the conflict continuum, in Great Power Competition. SOF expands the strategic options available to political and military leaders—expansion of choice—to anticipate and respond, especially in an early stage of a crises below the threshold of armed conflict. SOF also achieve significant results with limited forces—economy of force—when conventional formations are not available or capable. It is not about what SOF can and should do; the heart of the matter is what makes the strategic difference—expansion of choice and economy of force—that defines the future of SOF.Majoor, Royal Netherlands ArmyOberstleutnant, German ArmyApproved for public release. Distribution is unlimited

    Anti-C5a antibody vilobelimab treatment and the effect on biomarkers of inflammation and coagulation in patients with severe COVID-19: a substudy of the phase 2 PANAMO trial

    No full text
    We recently reported in the phase 3 PANAMO trial that selectively blocking complement 5a (C5a) with vilobelimab led to improved survival in critically ill COVID-19 patients. C5a is an important contributor to the innate immune system and can also activate the coagulation system. High C5a levels have been reported in severely ill COVID-19 patients and correlate with disease severity and mortality. Previously, we assessed the potential benefit and safety of vilobelimab in severe COVID-19 patients. In the current substudy of the phase 2 PANAMO trial, we aim to explore the effects of vilobelimab on various biomarkers of inflammation and coagulation. Between March 31 and April 24, 2020, 17 patients with severe COVID-19 pneumonia were enrolled in an exploratory, open-label, randomised phase 2 trial. Blood markers of complement, endothelial activation, epithelial barrier disruption, inflammation, neutrophil activation, neutrophil extracellular trap (NET) formation and coagulopathy were measured using enzyme-linked immunosorbent assay (ELISA) or utilizing the Luminex platform. During the first 15 days after inclusion, change in biomarker concentrations between the two groups were modelled with linear mixed-effects models with spatial splines and compared. Eight patients were randomized to vilobelimab treatment plus best supportive care (BSC) and nine patients were randomized to BSC only. A significant decrease over time was seen in the vilobelimab plus BSC group for C5a compared to the BSC only group (p < 0.001). ADAMTS13 levels decreased over time in the BSC only group compared to the vilobelimab plus BSC group (p < 0.01) and interleukin-8 (IL-8) levels were statistically more suppressed in the vilobelimab plus BSC group compared to the BSC group (p = 0.03). Our preliminary results show that C5a inhibition decreases the inflammatory response and hypercoagulability, which likely explains the beneficial effect of vilobelimab in severe COVID-19 patients. Validation of these results in a larger sample size is warranted

    Neurofilament light increases over time in severe COVID-19 and is associated with delirium

    No full text
    Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    International audienc
    corecore