943 research outputs found

    "Harmless delight but useful and instructive" : the woman's voice in Restoration adaptations of Shakespeare

    Get PDF
    The changes and upheaval in English society and in English ideas which took place during the seventeenth century had a profound effect upon public and private perceptions of women and of women's various roles in society. A study of the drama of this period provides the means to examine the development of these new views through the popular medium of the stage. In particular, the study of adaptations of early drama offer the opportunity to compare the stage perceptions of women which were prevalent during the late sixteenth and early seventeenth century with attitudes towards women which emerged during the Restoration and early eighteenth century; such an examination of these differing perceptions of women has not yet been undertaken. The adaptation of Shakespearean plays provide the most profitable study in this area; Shakespeare was not only a highly influential playwright, but was also one of the most adapted of all the early dramatists during the years of the Restoration. In order to facilitate this survey, I have selected plays which span the entire Restoration era, beginning with William Davenant's The Law Against Lovers and Macbeth as well as John Lacy's Sauny the Scot from the 1660's, through the late 1670's and early 1680's with Edward Ravenscroft's Titus Andronicus and Nahum Tate's The Ingratitude of a Common-Wealth, and finally into the reign of Anne Stuart with William Burnaby's Love Betray'd. The study of these plays offers the best opportunity for the examination, through the medium of the theatre, of the changes which occurred in the perception of women and their changing identity with the rapidly evolving society of Renaissance and Restoration English society

    Comorbid conditions explain the association between posttraumatic stress disorder and incident cardiovascular disease

    Get PDF
    Background Posttraumatic stress disorder ( PTSD ) is associated with risk of cardiovascular disease ( CVD ). Biopsychosocial factors associated with PTSD likely account for some or all of this association. We determined whether 1, or a combination of comorbid conditions explained the association between PTSD and incident CVD . Methods and Results Eligible patients used 1 of 5 Veterans Health Affairs medical centers distributed across the United States. Data were obtained from electronic health records. At index date, 2519 Veterans Health Affairs ( VA ) patients, 30 to 70 years of age, had PTSD diagnoses and 1659 did not. Patients had no CVD diagnoses for 12 months before index date. Patients could enter the cohort between 2008 and 2012 with follow-up until 2015. Age-adjusted Cox proportional hazard models were computed before and after adjusting for comorbidities. Patients were middle aged (mean=50.1 years, SD ±11.0), mostly male (87.0%), and 60% were white. The age-adjusted association between PTSD and incident CVD was significant (hazard ratio=1.41; 95% CI : 1.21-1.63). After adjustment for metabolic conditions, the association between PTSD and incident CVD was attenuated but remained significant (hazard ratio=1.23; 95% CI : 1.06-1.44). After additional adjustment for smoking, sleep disorder, substance use disorder, anxiety disorders, and depression, PTSD was not associated with incident CVD (hazard ratio=0.96; 95% CI : 0.81-1.15). Conclusions PTSD is not an independent risk factor for CVD . Physical and psychiatric conditions and smoking that co-occur with PTSD explain why this patient population has an increased risk of CVD . Careful monitoring may limit exposure to CVD risk factors and subsequent incident CVD

    In silico selection of RNA aptamers

    Get PDF
    In vitro selection of RNA aptamers that bind to a specific ligand usually begins with a random pool of RNA sequences. We propose a computational approach for designing a starting pool of RNA sequences for the selection of RNA aptamers for specific analyte binding. Our approach consists of three steps: (i) selection of RNA sequences based on their secondary structure, (ii) generating a library of three-dimensional (3D) structures of RNA molecules and (iii) high-throughput virtual screening of this library to select aptamers with binding affinity to a desired small molecule. We developed a set of criteria that allows one to select a sequence with potential binding affinity from a pool of random sequences and developed a protocol for RNA 3D structure prediction. As verification, we tested the performance of in silico selection on a set of six known aptamer–ligand complexes. The structures of the native sequences for the ligands in the testing set were among the top 5% of the selected structures. The proposed approach reduces the RNA sequences search space by four to five orders of magnitude—significantly accelerating the experimental screening and selection of high-affinity aptamers

    Emulsion PCR: A High Efficient Way of PCR Amplification of Random DNA Libraries in Aptamer Selection

    Get PDF
    Aptamers are short RNA or DNA oligonucleotides which can bind with different targets. Typically, they are selected from a large number of random DNA sequence libraries. The main strategy to obtain aptamers is systematic evolution of ligands by exponential enrichment (SELEX). Low efficiency is one of the limitations for conventional PCR amplification of random DNA sequence library in aptamer selection because of relative low products and high by-products formation efficiency. Here, we developed emulsion PCR for aptamer selection. With this method, the by-products formation decreased tremendously to an undetectable level, while the products formation increased significantly. Our results indicated that by-products in conventional PCR amplification were from primer-product and product-product hybridization. In emulsion PCR, we can completely avoid the product-product hybridization and avoid the most of primer-product hybridization if the conditions were optimized. In addition, it also showed that the molecule ratio of template to compartment was crucial to by-product formation efficiency in emulsion PCR amplification. Furthermore, the concentration of the Taq DNA polymerase in the emulsion PCR mixture had a significant impact on product formation efficiency. So, the results of our study indicated that emulsion PCR could improve the efficiency of SELEX

    In vitro selection of RNA aptamers against a conserved region of the Plasmodium falciparum erythrocyte membrane protein 1

    Get PDF
    The var-gene encoding Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is known to play a major role in the pathogenicity of the P. falciparum parasite. The protein enables the parasite to adhere to the endothelial linings of small blood vessels (cytoadherence) as well as to non-infected erythrocytes (rosetting), thus preventing clearance from the bloodstream. The development and spread of resistance towards most anti-malarial drugs used for treatment and prevention of the most severe form of malaria truly emphasise the importance of a continuous research and development of new drugs. In this study we use Systematic Evolution of Ligands by EXponential enrichment (SELEX) methodology to isolate high-affinity ligands (aptamers). To validate the results from the SELEX in vitro selection, different aptamers have been selected against PfEMP1 in a live cell assay of P. falciparum strain FCR3S1.2, a highly rosetting strain. We have been able to show the rosette disrupting capacity of these SELEX-aptamers at concentrations of 33 nM and with 100% disruption at 387 nM. The described results show that RNA aptamers are promising candidates for adjunct therapy in severe malaria

    Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein

    Get PDF
    RNA aptamers against bovine prion protein (bPrP) were obtained, most of the obtained aptamers being found to contain the r(GGAGGAGGAGGA) (R12) sequence. Then, it was revealed that R12 binds to both bPrP and its β-isoform with high affinity. Here, we present the structure of R12. This is the first report on the structure of an RNA aptamer against prion protein. R12 forms an intramolecular parallel quadruplex. The quadruplex contains G:G:G:G tetrad and G(:A):G:G(:A):G hexad planes. Two quadruplexes form a dimer through intermolecular hexad–hexad stacking. Two lysine clusters of bPrP have been identified as binding sites for R12. The electrostatic interaction between the uniquely arranged phosphate groups of R12 and the lysine clusters is suggested to be responsible for the affinity of R12 to bPrP. The stacking interaction between the G:G:G:G tetrad planes and tryptophan residues may also contribute to the affinity. One R12 dimer molecule is supposed to simultaneously bind the two lysine clusters of one bPrP molecule, resulting in even higher affinity. The atomic coordinates of R12 would be useful for the development of R12 as a therapeutic agent against prion diseases and Alzheimer's disease
    corecore