34 research outputs found

    Mid- to Late Holocene elemental record and isotopic composition of lead in a peat core from Wolbrom (S Poland)

    Get PDF
    Peat Core W3 was taken from the fen in Wolbrom (Silesian-Cracovian Upland, Southern Poland) in September 2015. Previous analyses of Core W3 showed a significant increase in lead concentration during the time of the Roman Empire as well as some changes in peat accumulation conditions. The work reported here investigates its geochemical composition in terms of major and trace elements (Pb, Zn, Na, K, Ca, Fe, Mg, Mn, Cu, Ni, Cr by AAS) as well as Pb isotopic composition, to identify the sources of metal pollution in the Wolbrom peat deposit. The geochemical record spans the period from 4900 BC to modern times, with a likely hiatus corresponding to the period from the Middle Ages to the beginning of the contemporary metallurgical industry. The Pb isotopic composition combined with a cluster analysis allows identification of the primary sources of Pb. In addition, Principal Component Analysis (PCA) helps to decipher the most important factors that affected the chemical composition of sediments at Wolbrom. These factors were linked to chemical denudation and human activity

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Holocene elemental, lead isotope and charcoal record from peat in southern Poland

    No full text
    This article presents a mid-resolution elemental, isotopic and charcoal record from 10700 BC to AD 500 in a peat core located in Żyglin (southern Poland). The objective is to give insight into the proxies with emphasis on lead (Pb) sources in this minerogenic peat deposit. During the Early Holocene (10700–7550 BC) the average 206Pb/207Pb quotient was around 1.196. This isotopic signature is consistent with natural dust derived from long-distance soil and rock weathering. The Mid-Holocene period (7550–3200 BC) shows a significant change in the peat accumulation conditions. The growth rate is approximately 0.04 mm yr-1 and the 206Pb/207Pb quotients are shifted toward values that are found in local galena ores. This is simultaneous with a significantly increased lead flux which further confirms local sources of material in this peat deposit. In the Late Holocene period (3200 BC–AD 500) a large quantity of charcoal particles with diameters ranging from 2 mm up to 3 cm is found; also, Pb, Zn and Cu fluxes reach their highest values. This period corresponds to the Eneolithic, Bronze and Iron Ages, and human impact is recorded as charcoal
    corecore