870 research outputs found

    Anisotropic quantum emitter interactions in two-dimensional photonic-crystal baths

    Full text link
    Quantum emitters interacting with two-dimensional photonic-crystal baths experience strong and anisotropic collective dissipation when they are spectrally tuned to 2D Van-Hove singularities. In this work, we show how to turn this dissipation into coherent dipole-dipole interactions with tuneable range by breaking the lattice degeneracy at the Van-Hove point with a superlattice geometry. Using a coupled-mode description, we show that the origin of these interactions stems from the emergence of a qubit-photon bound state which inherits the anisotropic properties of the original dissipation, and whose spatial decay can be tuned via the superlattice parameters or the detuning of the optical transition respect to the band-edges. Within that picture, we also calculate the emitter induced dynamics in an exact manner, bounding the parameter regimes where the dynamics lies within a Markovian description. As an application, we develop a four-qubit entanglement protocol exploiting the shape of the interactions. Finally, we provide a proof-of-principle example of a photonic crystal where such interactions can be obtained.Comment: 12 pages, 8 figure

    On the spectroscopy of quantum dots in microcavities

    Full text link
    At the occasion of the OECS conference in Madrid, we give a succinct account of some recent predictions in the spectroscopy of a quantum dot in a microcavity that remain to be observed experimentally, sometimes within the reach of the current state of the art.Comment: OECS11 Conference proceedings, in editor style. 4 pages, 1 figure. Animations provided separatel

    Purely Long-Range Coherent Interactions in Two-Dimensional Structured Baths

    Full text link
    In this work we study the quantum dynamics emerging when quantum emitters exchange excitations with a two-dimensional bosonic bath with hexagonal symmetry. We show that a single quantum emitter spectrally tuned to the middle of the band relaxes following a logarithmic law in time due to the existence of a singular point with vanishing density of states, i.e., the Dirac point. Moreover, when several emitters are coupled to the bath at that frequency, long-range coherent interactions between them appear which decay inversely proportional to their distance without exponential attenuation. We analyze both the finite and infinite system situation using both perturbative and non-perturbative methods.Comment: 18 pages, 7 figures. Text restructured. Extended discussion on experimental consideration

    Non-Markovian Quantum Optics with Three-Dimensional State-Dependent Optical Lattices

    Get PDF
    Quantum emitters coupled to structured photonic reservoirs experience unconventional individual and collective dynamics emerging from the interplay between dimensionality and non-trivial photon energy dispersions. In this work, we systematically study several paradigmatic three dimensional structured baths with qualitative differences in their bath spectral density. We discover non-Markovian individual and collective effects absent in simplified descriptions, such as perfect subradiant states or long-range anisotropic interactions. Furthermore, we show how to implement these models using only cold atoms in state-dependent optical lattices and show how this unconventional dynamics can be observed with these systems.Comment: 39 pages, 17 figures. Accepted versio

    Multimode Fock states with large photon number: effective descriptions and applications in quantum metrology

    No full text
    We develop general tools to characterise and efficiently compute relevant observables of multimode NN-photon states generated in non-linear decays in one-dimensional waveguides. We then consider optical interferometry in a Mach-Zender interferometer where a dd-mode photonic state enters in each arm of the interferometer. We derive a simple expression for the Quantum Fisher Information in terms of the average photon number in each mode, and show that it can be saturated by number-resolved photon measurements that do not distinguish between the different dd modes.Comment: 18 pages, 11 figures. V2: Minor change

    Optimization of photon correlations by frequency filtering

    Full text link
    Photon correlations are a cornerstone of Quantum Optics. Recent works [NJP 15 025019, 033036 (2013), PRA 90 052111 (2014)] have shown that by keeping track of the frequency of the photons, rich landscapes of correlations are revealed. Stronger correlations are usually found where the system emission is weak. Here, we characterize both the strength and signal of such correlations, through the introduction of the 'frequency resolved Mandel parameter'. We study a plethora of nonlinear quantum systems, showing how one can substantially optimize correlations by combining parameters such as pumping, filtering windows and time delay.Comment: Small updates to take into account the recent experimental observation of the physics here analyze

    Heralded multiphoton states with coherent spin interactions in waveguide QED

    Get PDF
    WaveguideQEDoffers the possibility of generating strong coherent atomic interactions either through appropriate atomic configurations in the dissipative regime or in the bandgap regime. In this work, we show how to harness these interactions in order to herald the generation of highly entangled atomic states, which afterwards can be mapped to generate single mode multi-photonic states with high fidelities.Weintroduce two protocols for the preparation of the atomic states, we discuss their performance and compare them to previous proposals. In particular, we show that one of them reaches high probability of success for systems with many atoms but low Purcell factors

    Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    Full text link
    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.Comment: Mathematica notebook attached for calculation of detection probabilitie
    • …
    corecore