15 research outputs found

    Determination and comparison of specific activity of the HIF-prolyl hydroxylases

    Get PDF
    AbstractHypoxia-inducible factor (HIF) is a transcriptional complex that is regulated by oxygen sensitive hydroxylation of its α subunits by the prolyl hydroxylases PHD1, 2 and 3. To better understand the role of these enzymes in directing cellular responses to hypoxia, we derived an assay to determine their specific activity in both native cell extracts and recombinant sources of enzyme. We show that all three are capable of high rates of catalysis, in the order PHD2=PHD3>PHD1, using substrate peptides derived from the C-terminal degradation domain of HIF-α subunits, and that each demonstrates similar and remarkable sensitivity to oxygen, commensurate with a common role in signaling hypoxia

    Nudging towards COVID-19 and influenza vaccination uptake in medically at-risk children : EPIC study protocol of randomised controlled trials in Australian paediatric outpatient clinics

    Get PDF
    Introduction: Children with chronic medical diseases are at an unacceptable risk of hospitalisation and death from influenza and SARS-CoV-2 infections. Over the past two decades, behavioural scientists have learnt how to design non-coercive ‘nudge’ interventions to encourage positive health behaviours. Our study aims to evaluate the impact of multicomponent nudge interventions on the uptake of COVID-19 and influenza vaccines in medically at-risk children. Methods and analyses: Two separate randomised controlled trials (RCTs), each with 1038 children, will enrol a total of approximately 2076 children with chronic medical conditions who are attending tertiary hospitals in South Australia, Western Australia and Victoria. Participants will be randomly assigned (1:1) to the standard care or intervention group. The nudge intervention in each RCT will consist of three text message reminders with four behavioural nudges including (1) social norm messages, (2) different messengers through links to short educational videos from a paediatrician, medically at-risk child and parent and nurse, (3) a pledge to have their child or themselves vaccinated and (4) information salience through links to the current guidelines and vaccine safety information. The primary outcome is the proportion of medically at-risk children who receive at least one dose of vaccine within 3 months of randomisation. Logistic regression analysis will be performed to determine the effect of the intervention on the probability of vaccination uptake. Ethics and dissemination: The protocol and study documents have been reviewed and approved by the Women’s and Children’s Health Network Human Research Ethics Committee (HREC/22/WCHN/2022/00082). The results will be published via peer-reviewed journals and presented at scientific meetings and public forums. Trial registration number: NCT05613751

    Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases

    Get PDF
    Background: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid b protein (Ab) oligomers has been identified as one of the central toxic events in AD, accumulation of a-synuclein (a-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Ab promotes a-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. Methodology/Principal Findings: In order to understand the molecular mechanisms involved in potential Ab/a-syn interactions, immunoblot, molecular modeling, and in vitro studies with a-syn and Ab were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Ab and a-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Ab binds a-syn monomers, homodimers, and trimers, forming hybrid ringlike pentamers. Interactions occurred between the N-terminus of Ab and the N-terminus and C-terminus of a-syn. Interacting a-syn and Ab dimers that dock on the membrane incorporated additional a-syn molecules, leading to th

    Report on the sixth blind test of organic crystal-structure prediction methods

    No full text
    The sixth blind test of organic crystal-structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal, and a bulky flexible molecule. This blind test has seen substantial growth in the number of submissions, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and "best practices" for performing CSP calculations. All of the targets, apart from a single potentially disordered Z` = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms

    Signal Transduction and Phosphoryl Transfer by a FixL Hybrid Kinase with Low Oxygen Affinity: Importance of the Vicinal PAS Domain and Receiver Aspartate

    No full text
    FixL is a prototype for heme-based sensors, multidomain proteins that typically couple a histidine protein kinase activity to a heme-binding domain for sensing of diatomic gases such as oxygen, carbon monoxide, and nitric oxide. Despite the relatively well-developed understanding of FixL, the importance of some of its domains has been unclear. To explore the impact of domain–domain interactions on oxygen sensing and signal transduction, we characterized and investigated <i>Rhizobium etli</i> hybrid sensor <i>Re</i>FixL. In <i>Re</i>FixL, the core heme-containing PAS domain and kinase region is preceded by an N-terminal PAS domain of unknown function and followed by a C-terminal receiver domain. The latter resembles a target substrate domain that usually occurs independently of the kinase and contains a phosphorylatable aspartate residue. We isolated the full-length <i>Re</i>FixL as a soluble holoprotein with a single heme <i>b</i> cofactor. Despite a low affinity for oxygen (<i>K</i><sub>d</sub> for O<sub>2</sub> of 738 μM), the kinase activity was completely switched off by O<sub>2</sub> at concentrations well below the <i>K</i><sub>d</sub>. A deletion of the first PAS domain strongly increased the oxygen affinity but essentially prohibited autophosphorylation, although the truncated protein was competent to accept phosphoryl groups in trans. These studies provide new insights into histidyl–aspartyl phosphoryl transfers in two-component systems and suggest that the control of ligand affinity and signal transduction by PAS domains can be direct or indirect

    A Simplified Model of Local Structure in Aqueous Proline Amino Acid Revealed by First-Principles Molecular Dynamics Simulations

    Get PDF
    Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data
    corecore