14,585 research outputs found

    An Intrinsic Approach to Forces in Magnetoelectric Media

    Get PDF
    This paper offers a conceptually straightforward method for the calculation of stresses in polarisable media based on the notion of a drive form and its property of being closed in spacetimes with symmetry. After an outline of the notation required to exploit the powerful exterior calculus of differential forms, a discussion of the relation between Killing isometries and conservation laws for smooth and distributional drive forms is given. Instantaneous forces on isolated spacetime domains and regions with interfaces are defined, based on manifestly covariant equations of motion. The remaining sections apply these notions to media that sustain electromagnetic stresses, with emphasis on homogeneous magnetoelectric material. An explicit calculation of the average pressure exerted by a monochromatic wave normally incident on a homogeneous, magnetoelectric slab in vacuo is presented and the concluding section summarizes how this pressure depends on the parameters in the magnetoelectric tensors for the medium.Comment: 25 pages, 3 figures, to appear in Il Nuovo Cimento B, proceedings of GCM8, Catania (Oct 2008) - References added, minor corrections mad

    Fast autotuning of a hydrogen maser by cavity Q modulation

    Get PDF
    A new fast autotuner for the hydrogen maser was implemented. By modulating the cavity, a phase shift in the maser output signal is induced which is proportional to the cavity tuning error. The phase shift is detected and fed back to a varactor tuner to stabilize the cavity against long-term drifts. Also, a PIN-diode cavity modulator which gives no incidental frequency shift over a very wide range of operation was developed. Modulated at over 200 Hz, it allows variations in maser cavity frequency to be compensated with a loop gain greater than 1000. Compensation of incidental amplitude modulation of the output was demonstrated

    Non-Riemannian Gravity and the Einstein-Proca System

    Get PDF
    We argue that all Einstein-Maxwell or Einstein-Proca solutions to general relativity may be used to construct a large class of solutions (involving torsion and non-metricity) to theories of non-Riemannian gravitation that have been recently discussed in the literature.Comment: 9 pages Plain Tex (No Figures), Letter to Editor Classical and Quantum Gravit

    The Construction of Spinor Fields on Manifolds with Smooth Degenerate Metrics

    Full text link
    We examine some of the subtleties inherent in formulating a theory of spinors on a manifold with a smooth degenerate metric. We concentrate on the case where the metric is singular on a hypersurface that partitions the manifold into Lorentzian and Euclidean domains. We introduce the notion of a complex spinor fibration to make precise the meaning of continuity of a spinor field and give an expression for the components of a local spinor connection that is valid in the absence of a frame of local orthonormal vectors. These considerations enable one to construct a Dirac equation for the discussion of the behavior of spinors in the vicinity of the metric degeneracy. We conclude that the theory contains more freedom than the spacetime Dirac theory and we discuss some of the implications of this for the continuity of conserved currents.Comment: 24 pages, LaTeX (RevTeX 3.0, no figures), To appear in J. Math. Phy

    The Transition State in a Noisy Environment

    Get PDF
    Transition State Theory overestimates reaction rates in solution because conventional dividing surfaces between reagents and products are crossed many times by the same reactive trajectory. We describe a recipe for constructing a time-dependent dividing surface free of such recrossings in the presence of noise. The no-recrossing limit of Transition State Theory thus becomes generally available for the description of reactions in a fluctuating environment
    • …
    corecore