86 research outputs found
Cemented mounds and hydrothermal sediments on the detachment surface at Kane Megamullion : a new manifestation of hydrothermal venting
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 3352–3378, doi:10.1002/ggge.20186.Long-lived detachment faults are now known to be important in tectonic evolution of slow-spreading mid-ocean ridges, and there is increasing evidence that fluid flow plays a critical role in development of detachment systems. Here we document a new manifestation of low-temperature hydrothermal venting associated with the detachment fault that formed Kane Megamullion ∼3.3–2.1 m.y. ago in the western rift-valley wall of the Mid-Atlantic Ridge. Hydrothermal effects on the detachment surface include (1) cemented mounds of igneous rock and chalk debris containing hydrothermal Mn oxides and Fe oxyhydroxides, and (2) layered deposits of similar Fe-Mn minerals ± interbedded chalks. Mounds are roughly conical, ∼1–10 m high, and contain primarily basalts with lesser gabbro, serpentinite, and polymict breccia. The layered Fe-Mn-rich sediments are flat-bedded to contorted and locally are buckled into low-relief linear or polygonal ridges. We propose that the mounds formed where hydrothermal fluids discharged through the detachment hanging wall near the active fault trace. Hydrothermal precipitates cemented hanging-wall debris and welded it to the footwall, and this debris persisted as mounds as the footwall was exhumed and surrounding unconsolidated material sloughed off the sloping detachment surface. Some of the layered Fe-Mn-rich deposits may have precipitated from fluids discharging from the hanging-wall vents, but they also precipitated from low-temperature fluids venting from the exposed footwall through overlying chalks. Observed natural disturbance and abnormally thin hydrogenous Fe-Mn crusts on some contorted, hydrothermal Fe-Mn-rich chalks on ∼2.7 Ma crust suggest diffuse venting that is geologically recent. Results of this study imply that there are significant fluid pathways through all parts of detachment systems and that low-temperature venting through fractured detachment footwalls may continue for several million years off-axis.NSF grant 0118445 supported
data acquisition and processing for Knorr Cruise 180-
2. The Deep Ocean Exploration Institute at Woods Hole
Oceanographic Institution supported research and analytical
costs for this study.2014-03-0
The Clusters AgeS Experiment (CASE). II. The Eclipsing Blue Straggler OGLEGC-228 in the Globular Cluster 47 Tuc
We use photometric and spectroscopic observations of the eclipsing binary
OGLEGC-228 (V228) to derive the masses, radii, and luminosities of the
component stars. Based on measured systemic velocity, proper motion and
distance, the system is a blue straggler member of the globular cluster 47 Tuc.
Our analysis shows that V228 is a semi-detached Algol. We obtain M=1.512 +/-
0.022 Msun, R=1.357 +/- 0.019 Rsun, L=7.02 +/- 0.050 Lsun for the hotter and
more luminous primary component and M=0.200 +/- 0.007 Msun, R=1.238 +/- 0.013
Rsun, L=1.57 +/- 0.09 Lsun for the Roche lobe filling secondary.Comment: 19 pages, 5 figures, AJ, in pres
Mylonitic deformation at the Kane oceanic core complex : implications for the rheological behavior of oceanic detachment faults
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 3085–3108, doi:10.1002/ggge.20184.The depth extent, strength, and composition of oceanic detachment faults remain poorly understood because the grade of deformation-related fabrics varies widely among sampled oceanic core complexes (OCCs). We address this issue by analyzing fault rocks collected from the Kane oceanic core complex at 23°30′N on the Mid-Atlantic Ridge. A portion of the sample suite was collected from a younger fault scarp that cuts the detachment surface and exposes the interior of the most prominent dome. The style of deformation was assessed as a function of proximity to the detachment surface, revealing a ∼450 m thick zone of high-temperature mylonitization overprinted by a ∼200 m thick zone of brittle deformation. Geothermometry of deformed gabbros demonstrates that crystal-plastic deformation occurred at temperatures >700°C. Analysis of the morphology of the complex in conjunction with recent thermochronology suggests that deformation initiated at depths of ∼7 km. Thus we suggest the detachment system extended into or below the brittle-plastic transition (BPT). Microstructural evidence suggests that gabbros and peridotites with high-temperature fabrics were dominantly deforming by dislocation-accommodated processes and diffusion creep. Recrystallized grain size piezometry yields differential stresses consistent with those predicted by dry-plagioclase flow laws. The temperature and stress at the BPT determined from laboratory-derived constitutive models agree well with the lowest temperatures and highest stresses estimated from gabbro mylonites. We suggest that the variation in abundance of mylonites among oceanic core complexes can be explained by variation in the depth of the BPT, which depends to a first order on the thermal structure and water content of newly forming oceanic lithosphere.Knorr Cruise 180-2 data and sample acquisition was supported
by NSF grant 0118445.2014-02-2
The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map
We present our catalog of U, B, V, and I stellar photometry of the central 64
sq. deg. area of the Large Magellanic Cloud. Internal and external astrometric
and photometric tests using existing optical photometry (U, B, and V from
Massey's bright star catalog and I from the near-infrared sky survey DENIS) are
used to confirm our observational uncertainty estimates. We fit stellar
atmosphere models to the optical data to check the consistency of the
photometry for individual stars across the passbands and to estimate the
line-of-sight extinction. Finally, we use the estimated line-of-sight
extinctions to produce an extinction map across the Large Magellanic Cloud,
confirm the variation of extinction as a function of stellar population, and
produce a simple geometrical model for the extinction as a function of stellar
population.Comment: 7 pages (emulateapj), accepted for publication in the Astronomical
Journa
A new Late Pliocene large provannid gastropod associated with hydrothermal venting at Kane Megamullion, Mid-Atlantic Ridge
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in Journal of Systematic Palaeontology 10 (2012): 423-433, doi:10.1080/14772019.2011.607193.A new gastropod, Kaneconcha knorri gen et sp. nov., was found in marlstone dredged
from the surface of Adam Dome at Kane Megamullion on the flank of the Mid-Atlantic
Ridge in an area of former hydrothermal activity. The snail is interpreted as a large
provannid similar to the chemosymbiotic genera Ifremeria and Alviniconcha. This is the
first record of presumably chemosymbiotic provannids from the Atlantic Ocean and also
the first fossil record of such large provannids associated with hydrothermal venting.
Extant Alviniconcha and Ifremeria are endemic to hydrothermal vents in the Pacific and
Indian oceans. Kaneconcha differs from Ifremeria in having no umbilicus and a posterior
notch, and it differs from Alviniconcha in having the profile of the whorl slightly
flattened and having no callus on the inner lip. A dark layer covering the Kaneconcha
shell is interpreted here as a fossilized periostracum. The shell/periostracum interface
shows fungal traces attributed to the ichnospecies Saccomorpha clava. We hypothesize
that large chemosymbiotic provannids (i.e., Kaneconcha, Ifremeria, and Alviniconcha)
form a clade that possibly diverged from remaining provannids in the Late Jurassic, with
the Late Jurassic/Early Cretaceous Paskentana being an early member.R/V Knorr Cruise 180-
2 to Kane Megamullion was supported by National Science Foundation grant OCE-
0118445. A. Kaim acknowledges support from the Alexander von Humboldt Foundation.
B. Tucholke acknowledges support from an Andrew W. Mellon Foundation Award for
Innovative Research and from the Deep Ocean Exploration Institute at Woods Hole
Oceanographic Institution
Rift structure and sediment infill of hyperextended continental crust: insights from 3D seismic and well data (Xisha Trough, South China Sea)
Three‐dimensional seismic and well data from the deepwater Xisha Trough are used to investigate the rift structure and sediment infill of a region formed adjacently to the initial oceanic ridge of the South China Sea (SCS). The high‐quality data permitted a detailed analysis of features such as: (1) detachment faults soling out at the Moho, (2) rotated and thinned continental blocks covered by thick sediment, and (3) changes in the location of basin depocenters resulting from detachment faulting. During the continental rifting phase (Eocene to earliest Oligocene), faulting was broadly distributed in Xisha Trough and resulted in the generation of isolated grabens/half‐grabens filled by proximal sediment sources. During continental breakup in the Northwest Ocean Sector of SCS (Oligocene), extension became restricted to a narrow region where highly tilted continental blocks and thin crust were formed. Sediment was, at that time, fed to distal depocenters, which are presently bounded by listric faults rooted in a basal detachment. Later in a second stage (early Miocene), synchronously with continental breakup in the Southwest Ocean Sector of the SCS, the study area was blanketed by thick sediment. During the two continental breakup events, the hyperextended Xisha Trough was affected by closely spaced, small‐scale faults rather than large basement‐related structures. Our study highlights the effect of continental breakup as a way to broaden sediment influx from multiple sources into deepwater basins. As a corollary, this work recognizes two distinct breakup sequences in the Xisha Trough, and concludes on their geodynamic significance to the SCS
Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma
Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1024, doi:10.1029/2002GC000364.The Mid-Atlantic Ridge around the Fifteen-Twenty Fracture Zone is unique in that outcrops of lower crust and mantle rocks are extensive on both flanks of the axial valley walls over an unusually long distance along-axis, indicating a high ratio of tectonic to magmatic extension. On the basis of newly collected multibeam bathymetry, magnetic, and gravity data, we investigate crustal evolution of this unique section of the Mid-Atlantic Ridge over the last 5 Ma. The northern and southern edges of the study area, away from the fracture zone, contain long abyssal hills with small spacing and fault throw, well lineated and high-amplitude magnetic signals, and residual mantle Bouguer anomaly (RMBA) lows, all of which suggest relatively robust magmatic extension. In contrast, crust in two ridge segments immediately north of the fracture zone and two immediately to the south is characterized by rugged and blocky topography, by low-amplitude and discontinuous magnetization stripes, and by RMBA highs that imply thin crust throughout the last 5 Ma. Over these segments, morphology is typically asymmetric across the spreading axis, indicating significant tectonic thinning of crust caused by faults that have persistently dipped in only one direction. North of the fracture zone, however, megamullions are that thought to have formed by slip on long-lived normal faults are found on both ridge flanks at different ages and within the same spreading segment. This unusual partitioning of megamullions can be explained either by a ridge jump or by polarity reversal of the detachment fault following formation of the first megamullion.This work was completed while T. Fujiwara was
a Guest Investigator at Woods Hole Oceanographic Institution
with funding from Japan Marine Science and Technology
Center (JAMSTEC), National Science Foundation, and the
JAMSTEC Research Overseas Program. J. Lin’s contributions
to this research were supported by NSF Grant OCE-9811924.
B. E. Tucholke’s contributions were supported by NSF Grant
OCE-9503561 and by the Andrew W. Mellon Endowment
Fund for Innovative Research and the Henry Bryant Bigelow
Chair at Woods Hole Oceanographic Institution
Plutonic foundation of a slow-spreading ridge segment : oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q05014, doi:10.1029/2007GC001645.We mapped the Kane megamullion, an oceanic core complex on the west flank of the Mid-Atlantic Ridge exposing the plutonic foundation of a ∼50 km long, second-order ridge segment. The complex was exhumed by long-lived slip on a normal-sense detachment fault at the base of the rift valley wall from ∼3.3 to 2.1 Ma (Williams, 2007). Mantle peridotites, gabbros, and diabase dikes are exposed in the detachment footwall and in outward facing high-angle normal fault scarps and slide-scar headwalls that cut through the detachment. These rocks directly constrain crustal architecture and the pattern of melt flow from the mantle to and within the lower crust. In addition, the volcanic carapace that originally overlay the complex is preserved intact on the conjugate African plate, so the complete internal and external architecture of the paleoridge segment can be studied. Seafloor spreading during formation of the core complex was highly asymmetric, and crustal accretion occurred largely in the footwall of the detachment fault exposing the core complex. Because additions to the footwall, both magmatic and amagmatic, are nonconservative, oceanic detachment faults are plutonic growth faults. A local volcano and fissure eruptions partially cover the northwestern quarter of the complex. This volcanism is associated with outward facing normal faults and possible, intersecting transform-parallel faults that formed during exhumation of the megamullion, suggesting the volcanics erupted off-axis. We find a zone of late-stage vertical melt transport through the mantle to the crust in the southern part of the segment marked by a ∼10 km wide zone of dunites that likely fed a large gabbro and troctolite intrusion intercalated with dikes. This zone correlates with the midpoint of a lineated axial volcanic high of the same age on the conjugate African plate. In the central region of the segment, however, primitive gabbro is rare, massive depleted peridotite tectonites abundant, and dunites nearly absent, which indicate that little melt crossed the crust-mantle boundary there. Greenschist facies diabase and pillow basalt hanging wall debris are scattered over the detachment surface. The diabase indicates lateral melt transport in dikes that fed the volcanic carapace away from the magmatic centers. At the northern edge of the complex (southern wall of the Kane transform) is a second magmatic center marked by olivine gabbro and minor troctolite intruded into mantle peridotite tectonite. This center varied substantially in size with time, consistent with waxing and waning volcanism near the transform as is also inferred from volcanic abyssal-hill relief on the conjugate African plate. Our results indicate that melt flow from the mantle focuses to local magmatic centers and creates plutonic complexes within the ridge segment whose position varies in space and time rather than fixed at a single central point. Distal to and between these complexes there may not be continuous gabbroic crust, but only a thin carapace of pillow lavas overlying dike complexes laterally fed from the magmatic centers. This is consistent with plate-driven flow that engenders local, stochastically distributed transient instabilities at depth in the partially molten mantle that fed the magmatic centers. Fixed boundaries, such as large-offset fracture zones, or relatively short segment lengths, however, may help to focus episodes of repeated melt extraction in the same location. While no previous model for ocean crust is like that inferred here, our observations do not invalidate them but rather extend the known diversity of ridge architecture.NSF Grants
OCE-0118445, OCE-0624408 and OCE-0621660 supported
this research. B. Tucholke was also supported by the Henry
Bryant Bigelow Chair in Oceanography at Woods Hole
Oceanographic Institution
Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge
Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 286-292, doi:10.1038/ngeo824.Mid-ocean ridge crustal accretion occurs continuously at all spreading rates
through a combination of magmatic and tectonic processes. Fast to slow spreading
ridges are largely built by adding magma to narrowly focused neovolcanic zones. In
contrast, ultraslow spreading ridge construction significantly relies on tectonic
accretion, which is characterized by thin volcanic crust, emplacement of mantle
peridotite directly to the seafloor, and unique seafloor fabrics with variable
segmentation patterns. While advances in remote imaging have enhanced our
observational understanding of crustal accretion at all spreading rates, temporal
information is required in order to quantitatively understand mid-ocean ridge
construction. However, temporal information does not exist for ultraslow spreading
environments. Here, we utilize U-series eruption ages to investigate crustal
accretion at an ultraslow spreading ridge for the first time. Unexpectedly young
eruption ages throughout the Southwest Indian ridge rift valley indicate that
neovolcanic activity is not confined to the spreading axis, and that magmatic crustal
accretion occurs over a wider zone than at faster spreading ridges. These
observations not only suggest that crustal accretion at ultraslow spreading ridges is
distinct from faster spreading ridges, but also that the magma transport
mechanisms may differ as a function of spreading rate.This work was supported by
the following NSF grants: NSF-OCE 0137325; NSF-OCE 060383800; and NSF-OCE
062705300
Prodigious submarine landslides during the inception and early growth of volcanic islands
Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of
turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth’s surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard
- …