339 research outputs found

    Pion Mass Modification in presence of external magnetic field

    Full text link
    In this work, the self energies of π0\pi^0 and π±\pi^{\pm} up to one loop order have been calculated in the limit of weak external magnetic field. The effective masses are explicitly dependent on the magnetic field which are modified significantly for the pseudoscalar coupling due to weak field approximation of the external field. On the other hand, for the pseudovector coupling, there is a modest increment in the effective masses of the pions. These theoretical developments are relevant for the study of the phenomenological aspect of mesons in the context of neutron stars as well as heavy ion collisions.Comment: Published in conference proceedings of DAE-HEP-2016 (XXII DAE High Energy Physics Symposium, New Delhi, India

    Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Get PDF
    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a "gold key” has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research

    Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt

    Get PDF
    The SC "Phobos-Grunt" flight is planned to 2009 in Russia with the purpose to deliver to the Earth the soil samples of the Mars satellite Phobos. The mission will pass under the following scheme [1-4]: the SC flight from the Earth to the Mars, the SC transit on the Mars satellite orbit, the motion round the Mars on the observation orbit and on the quasi-synchronous one [5], landing on Phobos, taking of a ground and start in the direction to the Earth. The implementation of complicated dynamical operations in the Phobos vicinity is foreseen by the project. The SC will be in a disturbance sphere of gravitational fields from the Sun, the Mars and the Phobos. The SC orbit determination is carried out on a totality of trajectory measurements executed from ground tracking stations and measurements of autonomous systems onboard space vehicle relatively the Phobos. As ground measurements the radio engineering measurements of range and range rate are used. There are possible as onboard optical observations of the Phobos by a television system and ranges from the SC up to the Phobos surface by laser locator. As soon as the Phobos orbit accuracy is insufficient for a solution of a problem of landing its orbit determination will be carried out together with determination of the SC orbit. Therefore the algorithms for joint improving of initial conditions of the SC and the Phobos are necessary to determine parameters of the SC relative the Phobos motion within a single dynamical motion model. After putting on the martial satellite orbit, on the Phobos observation orbit, on the quasi-synchronous orbit in the Phobos vicinity the equipment guidance and the following process of the SC orbit determination relatively Phobos requires a priori knowledge of the Phobos orbit parameters with sufficiently high precision. These parameters should be obtained beforehand using both all modern observations and historical ones

    Photometric observations of the supernova 2009nr

    Full text link
    We present the results of our UBVRI CCD photometry for the second brightest supernova of 2009, SN 2009nr, discovered during a sky survey with the telescopes of the MASTER robotic network. Its light and color curves and bolometric light curves have been constructed. The light-curve parameters and the maximum luminosity have been determined. SN 2009nr is shown to be similar in light-curve shape and maximum luminosity to SN 1991T, which is the prototype of the class of supernovae Ia with an enhanced luminosity. SN 2009nr exploded far from the center of the spiral galaxy UGC 8255 and most likely belongs to its old halo population. We hypothesize that this explosion is a consequence of the merger of white dwarfs

    Modeling of laser-induced plasmon effects in GNS-DLC-based material for application in X-ray source array sensors

    Get PDF
    An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated. The advantages of the proposed material and the prospects for using X-ray computed tomography in the matrix source are evaluated

    Temperature sensing of adipose tissue heating with the luminescent upconversion nanoparticles as nanothermometer: In vitro study

    Get PDF
    The luminescence spectra of upconversion nanoparticles (UCNPs) imbedded in fat tissue were measured in a wide temperature range, from room to human body and further to hyperthermic temperatures. The two types of synthesized UCNP [NaYF4:Yb3+, Er3+] specimens, namely, powdered as-is and embedded into polymer film, were used. The results show that the luminescence of UCNPs placed under the adipose tissue layer is reasonably good sensitive to temperature change and reflects phase transitions of lipids in tissue cells. The most likely, multiple phase transitions are associated with the different components of fat cells such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The phase transitions of lipids were observed as the changes of the slope of the temperature dependence of UCNP luminescence intensity. The obtained results confirm a high sensitivity of the luminescent UCNPs to the temperature variations within tissues and show a strong potential for providing a controllable tissue thermolysis

    Changes in optical properties of model cholangiocarcinoma after plasmon-resonant photothermal treatment

    Get PDF
    The heating degree of the inner layers of tumor tissue is an important parameter required to optimize plasmonic photothermal therapy (PPT). This study reports the optical properties of tissue layers of transplanted cholangiocarcinoma and covering tissues in rats without treatment (control group) and after PPT using gold nanorods (experimental group). PPT was carried out for 15 min, and the temperature on the skin surface reached 54.8 1.6 C. The following samples were cut out ex vivo and studied: skin, subcutaneous connective tissue, tumor capsule, top, center, and bottom part of the tumor. The samples’ absorption and reduced scattering coefficients were calculated using the inverse adding–doubling method at 350–2250 nm wavelength. Diffuse reflectance spectra of skin surface above tumors were measured in vivo in the control and experimental groups before and immediately after PPT in the wavelength range of 350–2150 nm. Our results indicate significant differences between the optical properties of the tissues before and after PPT. The differences are attributed to edema and hemorrhage in the surface layers, tissue dehydration of the deep tumor layers, and morphological changes during the heating

    Pair production by boost-invariant fields in comoving coordinates

    Full text link
    We derive the pair-production probability in a constant electric field in Rindler coordinates in a quasi-classical approximation. Our result is different from the pair-production probability in an inertial frame (Schwinger formula). In particular, it exhibits non-trivial dependence on rapidity and deviation from Gaussian behavior at small transverse momenta. Our results can be important for analysis of particle production in heavy-ion collisions.Comment: 12 pages, 2 figures. Discussion added and typos fixe
    corecore