49 research outputs found
The e!ects of a non-intervention HACCP implementation on process hygiene indicators on bovine and porcine carcasses
Four sites on each of 720 dressed carcasses (360 bovine and 360 porcine) were sampled (2,880 samples in total) in a single commercial
abattoir slaughtering cattle and pigs using two separate slaughterlines. The carcasses were sampled before HACCP (pre-HACCP;
960 samples) and after HACCP implementation (post-HACCP; 1,920 samples) and Total Viable Count (TVC), Enterobacteriaceae count
(EC) and Salmonella spp. prevalence were determined. During the pre-HACCP period, mean TVC levels on four tested sites varied on
bovine carcasses between 3.03 and 4.19 log10 cfu/cm2 and on porcine carcasses between 3.73 and 3.99 log10 cfu/cm2. During the
post-HACCP period, TVC levels on all tested sites on carcasses were further signicantly reduced, by 0.33-1.64 log and 1.13-2.04 log
on bovine and porcine carcasses, respectively, compared to the pre-HACCP period. Both the EC occurrence in samples and EC levels in
EC-positive samples somewhat decreased during post-HACCP as compared to pre-HACCP period, but the reductions were not statistically
signicant due to large proportion of EC-negative samples and very low counts in EC-positive samples. Salmonella spp. was not
detected in any of bovine or porcine carcass samples, regardless of whether they were taken pre- or post-HACCP. Overall, the processhygiene-
improving eects of non-intervention HACCP have been proven through reduction of TVC on carcasses, but could not be
veried in the present study through similar reductions in EC and/or Salmonella, because of their low levels and/or absence
Validation and comparison of two methods to Assess Human Energy Expenditure during Free-Living Activities
Background:
The measurement of activity energy expenditure (AEE) via accelerometry is the most commonly used objective method for assessing human daily physical activity and has gained increasing importance in the medical, sports and psychological science research in recent years.
Objective: The purpose of this study was to determine which of the following procedures is more accurate to determine the energy cost during the most common everyday life activities; a single regression or an activity based approach. For this we used a device that utilizes single regression models (GT3X, ActiGraph Manufacturing Technology Inc., FL., USA) and a device using activity-dependent calculation models (move II, movisens GmbH, Karlsruhe, Germany).
Material and Methods:
Nineteen adults (11 male, 8 female; 30.469.0 years) wore the activity monitors attached to the waist and a portable indirect calorimeter (IC) as reference measure for AEE while performing several typical daily activities. The accuracy of the two devices for estimating AEE was assessed as the mean differences between their output and the reference and evaluated using Bland-Altman analysis.
Results:
The GT3X overestimated the AEE of walking (GT3X minus reference, 1.26 kcal/min), walking fast (1.72 kcal/min), walking up2/downhill (1.45 kcal/min) and walking upstairs (1.92 kcal/min) and underestimated the AEE of jogging (2 1.30 kcal/min) and walking upstairs (22.46 kcal/min). The errors for move II were smaller than those for GT3X for all activities. The move II overestimated AEE of walking (move II minus reference, 0.21 kcal/min), walking up2/downhill (0.06 kcal/min) and stair walking (upstairs: 0.13 kcal/min; downstairs: 0.29 kcal/min) and underestimated AEE of walking fast (20.11 kcal/min) and jogging (20.93 kcal/min).
Conclusions:
Our data suggest that the activity monitor using activity-dependent calculation models is more appropriate for predicting AEE in daily life than the activity monitor using a single regression model
The Role of Psychological Factors in Judo: A Systematic Review
(1) Background: Psychological parameters are relevant in the practice of judo. Previous studies have shown that parameters such as anxiety or motivation can have a negative or positive impact on the athlete\u2019s performance and general well-being, depending on the athlete\u2019s perception. This systematic review aimed to summarize the studies examining the influence of various psychological parameters on well-being and performance in judo athletes; (2) Methods: We followed preferred reporting elements for systematic reviews and meta-analyses. We searched the Web of Science database for studies that explained the role of these parameters in elite athletes. Of the 286 articles initially identified, 17 met our eligibility criteria and were included in the review. In total, we analyzed data from 721 judo athletes; (3) Results: The studies found have demonstrated the impact of various psychological parameters during high-level performance and how these parameters can influence and lead an athlete to win or lose a competition. The feelings of tension, anger, anxiety, and nervousness were significantly increased in athletes who were facing defeat, while a decrease in the same segments and an increase in motivation among athletes who were experiencing better performance was observed. Further research under standardized conditions is needed to better understand the effects of these parameters on judo athletes; (4) Conclusions: Considering the athlete\u2019s psychological state can affect performance, and it is therefore important to monitor and train these factors
Automated Non-Sterile Pharmacy Compounding: A Multi-Site Study in European Hospital and Community Pharmacies with Pediatric Immediate Release Propranolol Hydrochloride Tablets.
Pharmacy compounding, the art and science of preparing customized medications to meet individual patient needs, is on the verge of transformation. Traditional methods of compounding often involve manual and time-consuming processes, presenting challenges in terms of consistency, dosage accuracy, quality control, contamination, and scalability. However, the emergence of cutting-edge technologies has paved a way for a new era for pharmacy compounding, promising to redefine the way medications are prepared and delivered as pharmacy-tailored personalized medicines. In this multi-site study, more than 30 hospitals and community pharmacies from eight countries in Europe utilized a novel automated dosing approach inspired by 3D printing for the compounding of non-sterile propranolol hydrochloride tablets. CuraBlend <sup>Âź</sup> excipient base, a GMP-manufactured excipient base (pharma-ink) intended for automated compounding applications, was used. A standardized study protocol to test the automated dosing of tablets with variable weights was performed in all participating pharmacies in four different iterative phases. Integrated quality control was performed with an in-process scale and NIR spectroscopy supported by HPLC content uniformity measurements. In total, 6088 propranolol tablets were produced at different locations during this study. It was shown that the dosing accuracy of the process increased from about 90% to 100% from Phase 1 to Phase 4 by making improvements to the formulation and the hardware solutions. The results indicate that through this automated and quality controlled compounding approach, extemporaneous pharmacy manufacturing can take a giant leap forward towards automation and digital manufacture of dosage forms in hospital pharmacies and compounding pharmacies
Drug Absorption Modeling as a Tool to Define the Strategy in Clinical Formulation Development
The purpose of this mini review is to discuss the use of physiologically-based drug absorption modeling to guide the formulation development. Following an introduction to drug absorption modeling, this article focuses on the preclinical formulation development. Case studies are presented, where the emphasis is not only the prediction of absolute exposure values, but also their change with altered input values. Sensitivity analysis of technologically relevant parameters, like the drugâs particle size, dose and solubility, is presented as the basis to define the clinical formulation strategy. Taking the concept even one step further, the article shows how the entire design space for drug absorption can be constructed. This most accurate prediction level is mainly foreseen once clinical data is available and an example is provided using mefenamic acid as a model drug. Physiologically-based modeling is expected to be more often used by formulators in the future. It has the potential to become an indispensable tool to guide the formulation development of challenging drugs, which will help minimize both risks and costs of formulation development
Efficiency of Coagulation/Flocculation for the Removal of Complex Mixture of Textile Fibers from Water
Synthetic fibers enter wastewater treatment plants together with natural fibers, which may affect treatment efficiency, a fact not considered in previous studies. Therefore, the aim of the present study was to evaluate the efficiency of the coagulation/flocculation process for the removal of a mixture of textile fibers from different water matrices. Natural and synthetic fibers (100 mg/L; cotton, polyacrylonitrile, and polyamide) were added to a synthetic matrix, surface water and laundry wastewater and subjected to coagulation/flocculation experiments with ferric chloride (FeCl3) and polyaluminum chloride (PACl) under laboratory conditions. In the synthetic matrix, both coagulants were found to be effective, with FeCl3 having a lesser advantage, removing textile fibers almost completely from the water (up to 99% at a concentration of 3.94 mM). In surface water, all dosages had approximately similar high values, with the coagulant resulting in complete removal. In laundry effluent, the presence of surfactants is thought to affect coagulation efficiency. PACl was found to be effective in removing textile fibers from laundry wastewater, with the lowest removal efficiency being 89% and all dosages having similar removal efficiencies. Natural organic matter and bicarbonates showed a positive effect on the efficiency of FeCl3 in removing textile fibers from surface water. PACl showed better performance in coagulating laundry wastewater while surfactants had a negative effect on FeCl3 coagulation efficiency
A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices
Sustainable development is a big global challenge for the 21st century. In recent years, a class of emerging contaminants known as microplastics (MPs) has been identified as a significant pollutant with the potential to harm ecosystems. These small plastic particles have been found in every compartment of the planet, with aquatic habitats serving as the ultimate sink. The challenge to extract MPs from different environmental matrices is a tangible and imperative issue. One of the primary specialties of research in environmental chemistry is the development of simple, rapid, low-cost, sensitive, and selective analytical methods for the extraction and identification of MPs in the environment. The present review describes the developments in MP extraction methods from complex environmental matrices. All existing methodologies (new, old, and proof-of-concept) are discussed and evaluated for their potential usefulness to extract MPs from various biotic and abiotic matrices for the sake of progress and innovation. This study concludes by addressing the current challenges and outlining future research objectives aimed at combating MP pollution. Additionally, a set of recommendations is provided to assist researchers in selecting appropriate analytical techniques for obtaining accurate results. To facilitate this process, a proposed roadmap for MP extraction is presented, considering the specific environmental compartments under investigation. By following this roadmap, researchers can enhance their understanding of MP pollution and contribute to effective mitigation strategies