26 research outputs found

    Experimental Phase Function and Degree of Linear Polarization Curves of Millimeter- sized Cosmic Dust Analogs

    No full text
    International audienceWe present laboratory measurements of the phase functions and degree of linear polarization (DLP) curves of a selection of millimeter-sized cosmic dust analog particles. The set includes particles with similar sizes but diverse internal structure (compact and porous) and absorbing properties. The measured phase functions are found to be in all cases very different from those of micron-sized particles. They show a monotonic decrease with increasing phase angle from the back- to the side-scattering region, reaching a minimum at large phase angles before a steep increase of the forward peak. This is in stark contrast to the phase functions of micron-sized particles, which are rather flat at low and intermediate phase angles. The maximum of the DLP for millimeter-sized compact particles is shifted toward larger phase angles (∌130°) compared to that of micron-sized particles (∌90°). Porosity plays an important role in the measured DLP curves: the maximum significantly decreases for increasing porosity as a result of multiple scattering within the particle. Large porous particles with highly absorbing inclusions can reproduce both the OSIRIS/Rosetta phase functions and ground-based DLP observations of comet 67P/Churyumov-Gerasimenko

    Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko

    Get PDF
    International audienceBefore Rosetta, the space missions Giotto and Stardust shaped our view on cometary dust, supported by plentiful data from Earth based observations and interplanetary dust particles collected in the Earth’s atmosphere. The Rosetta mission at comet 67P/Churyumov-Gerasimenko was equipped with a multitude of instruments designed to study cometary dust. While an abundant amount of data was presented in several individual papers, many focused on a dedicated measurement or topic. Different instruments, methods, and data sources provide different measurement parameters and potentially introduce different biases. This can be an advantage if the complementary aspect of such a complex data set can be exploited. However, it also poses a challenge in the comparison of results in the first place. The aim of this work therefore is to summarize dust results from Rosetta and before. We establish a simple classification as a common framework for intercomparison. This classification is based on the dust particle structure, porosity, and strength and also on its size. Depending on the instrumentation, these are not direct measurement parameters, but we chose them because they were the most reliable for deriving our model. The proposed classification has proved helpful in the Rosetta dust community, and we offer it here also for a broader context. In this manner, we hope to better identify synergies between different instruments and methods in the future

    Pronounced morphological changes in a southern active zone on comet 67P/Churyumov-Gerasimenko

    No full text
    International audienceA smooth deposit in the southern Khonsu region has been seen in ESA/Rosetta observations as active during the second half of 2015, when the southern summer coincided with the perihelion passage of 67P/Churyumov-Gerasimenko (67P). Image color sequences acquired by the OSIRIS instrument in the period of January 2015 to July 2016, pre- and post-perihelion, show the occurrence of several small transient events as well as three massive outbursts (~10 to 1500 tons). High spatial resolution images taken one year and a half apart allowed us to track a variety of sources: the formation of cavities that are 1.3–14 m deep, ice-enriched patches, scarp retraction, and a second 50 m-wide boulder. We then estimated their masses and the dust mass of their corresponding plumes and outbursts. In particular, the deformation left by that boulder and its lack of talus may provide evidence for the lifting and subsequent falling back to the surface of large blocks. We calculate that a minimum vapor production rate of 1.4 × 1024 m−2 s−1 is required to lift such an object. The comparison of the masses that are lost in the new cavities to the dust mass of outbursts gives indirect evidence of highly volatile ice pockets underneath. The spectrophotometric analysis and boulder counting also provides evidence for cavities that formed only 30 m apart with different spectral slopes, two long-standing ice patches, and local variations in the boulder-size frequency distribution. All this points to sub-surface ice pockets with different degrees of depth. Finally, the total mass of the morphological changes compared to most recent calculations of the total released mass by activity on 67P is estimated to be between 1.5 and 4.2%. This means that as many as about 25 similar active zones across the nucleus would be enough to sustain the entire cometary activity

    Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images

    Get PDF
    International audienceThe southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a few months before cometary southern vernal equinox. The Anhur region in the southern part of the comet’s larger lobe was found to be highly eroded, enriched in volatiles, and highly active. We analyze high-resolution images of the Anhur region pre- and post-perihelion acquired by the OSIRIS imaging system on board the Rosetta mission. The Narrow Angle Camera is particularly useful for studying the evolution in Anhur in terms of morphological changes and color variations.Radiance factor images processed by the OSIRIS pipeline were coregistered, reprojected onto the 3D shape model of the comet, and corrected for the illumination conditions.We find a number of morphological changes in the Anhur region that are related to formation of new scarps; removal of dust coatings; localized resurfacing in some areas, including boulders displacements; and vanishing structures, which implies localized mass loss that we estimate to be higher than 50 million kg. The strongest changes took place in and nearby the Anhur canyon-like structure, where significant dust cover was removed, an entire structure vanished, and many boulders were rearranged. All such changes are potentially associated with one of the most intense outbursts registered by Rosetta during its observations, which occurred one day before perihelion passage. Moreover, in the niche at the foot of a new observed scarp, we also see evidence of water ice exposure that persisted for at least six months. The abundance of water ice, evaluated from a linear mixing model, is relatively high (>20%). Our results confirm that the Anhur region is volatile-rich and probably is the area on 67P with the most pristine exposures near perihelion

    The rocky‐like behavior of cometary landslides on 67P/Churyumov‐Gerasimenko

    Get PDF
    International audienceLandslides have been identified on several Solar System bodies and different mechanisms have been proposed to explain their runout length. We analyse images from the Rosetta mission and report the global characterisation of such features on comet 67P/Churyumov‐Gerasimenko's surface. By assuming the height to runout length as an approximation for the friction coefficient of landslide material, we find that on comet 67P, this ratio falls between 0.50 and 0.97. Such unexpected high values reveal a rocky‐type mechanical behaviour that is much more akin to Earth dry landslides than to icy satellites' mass movements. This behaviour indicates that 67P and likely comets in general are characterised by consolidated materials possibly rejecting the idea that they are fluffy aggregates. The variability of the runout length among 67P landslides can be attributed to the different volatile content located in the top few meters of the cometary crust, which can drive the mass movement

    Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko

    No full text
    International audienceWe provide a detailed quantitative analysis of isolated boulder fields situated in three different regions of comet 67P/Churyumov-Gerasimenko: Imhotep, Hapi, and Hatmehit. This is done to supply a useful method for analyzing the morphology of the boulders and to characterize the regions themselves.We used OSIRIS Narrow Angle Camera images with a spatial scale smaller than 2 m px−1 and analyzed the size-frequency distribution and the cumulative fractional area per boulder population. In addition, we correlated shape parameters, such as circularity and solidity, with both the spatial and the size-frequency distribution of the three populations.We identified 11 811 boulders in the Imhotep, Hapi, and Hatmehit regions. We found that the Hatmehit and Imhotep areas show power indices in the range of −2.3/−2.7. These values could represent a transition between gravitational events caused by thermal weathering and sublimation, and material formed during collapses that has undergone sublimation. The Hapi area is characterized by a lower power index (−1.2/−1.7), suggesting that those boulders have a different origin. They can be the result of material formed during gravitational events and collapses that has undergone continuous fragmentation. We calculated the cumulative fractional area (CFA) in order to investigate how the area is covered by boulders as a function of their sizes. The Hatmehit and Imhotep regions show a CFA that is well fit by a power law. In contrast, the Hapi area does not show the same trend. We analyzed the fractal distributions, finding that the populations seem to be fractal at all dimensions, except for the Hapi distribution, which shows a possible fractal behavior for small dimensions only. Finally, the average values of the shape parameters reveal solid and roundish boulders in all populations we studied

    Rosetta/OSIRIS observations of 67P nucleus during the April 2016 flyby: high-resolution spectrophotometry

    Get PDF
    23 pages, 14 figures, 5 tablesInternational audienceFrom August 2014 to September 2016, the Rosetta spacecraft followed comet 67P/Churyumov–Gerasimenko along its orbit. After the comet passed perihelion, Rosetta performed a flyby manoeuvre over the Imhotep–Khepry transition in April 2016. The OSIRIS/Narrow-Angle-Camera (NAC) acquired 112 observations with mainly three broadband filters (centered at 480, 649, and 743 nm) at a resolution of up to 0.53 m/px and for phase angles between 0.095° and 62°.We have investigated the morphological and spectrophotometrical properties of this area using the OSIRIS/NAC high-resolution observations. We assembled the observations into coregistered color cubes. Using a 3D shape model, we produced the illumination conditions and georeference for each observation. We mapped the observations of the transition to investigate its geomorphology. Observations were photometrically corrected using the Lommel–Seeliger disk law. Spectrophotometric analyses were performed on the coregistered color cubes. These data were used to estimate the local phase reddening.The Imhotep–Khepry transition hosts numerous and varied types of terrains and features. We observe an association between a feature’s nature, its reflectance, and its spectral slopes. Fine material deposits exhibit an average reflectance and spectral slope, while terrains with diamictons, consolidated material, degraded outcrops, or features such as somber boulders present a lower-than-average reflectance and higher-than-average spectral slope. Bright surfaces present here a spectral behavior consistent with terrains enriched in water-ice. We find a phase-reddening slope of 0.064 ± 0.001%/100 nm/° at 2.7 au outbound, similar to the one obtained at 2.3 au inbound during the February 2015 flyby.Identified as the source region of multiple jets and a host of water-ice material, the Imhotep–Khepry transition appeared in April 2016, close to the frost line, to further harbor several potential locations with exposed water-ice material among its numerous different morphological terrain units

    Models of Rosetta/OSIRIS 67P dust coma phase function

    Get PDF
    International audienceThe phase function of the dust coma of comet 67P has been determined from Rosetta/OSIRIS images. This function shows a deep minimum at phase angles near 100°, and a strong backscattering enhancement. These two properties cannot be reproduced by regular models of cometary dust, most of them based on wavelength-sized and randomly oriented aggregate particles. We show, however, that an ensemble of oriented elongated particles of a wide variety of aspect ratios, with radii r gsim 10 ÎŒm, and whose long axes are perpendicular to the direction of the solar radiation, are capable of reproducing the observed phase function. These particles must be absorbing, with an imaginary part of the refractive index of about 0.1 to match the expected geometric albedo, and with porosity in the 60%–70% range
    corecore