15 research outputs found

    The increasing threat to European forests from the invasive foliar pine pathogen, Lecanosticta acicola

    Get PDF
    European forests are threatened by increasing numbers of invasive pests and pathogens. Over the past century, Lecanosticta acicola, a foliar pathogen predominantly of Pinus spp., has expanded its range globally, and is increasing in impact. Lecanosticta acicola causes brown spot needle blight, resulting in premature defoliation, reduced growth, and mortality in some hosts. Originating from southern regions of North American, it devastated forests in the USA's southern states in the early twentieth century, and in 1942 was discovered in Spain.Derived from Euphresco project 'Brownspotrisk,' this study aimed to establish the current distribution of Lecanosticta species, and assess the risks of L. acicola to European forests. Pathogen reports from the literature, and new/ unpublished survey data were combined into an open-access geo-database (http://www.portaloff orestpathology.com), and used to visualise the pathogen's range, infer its climatic tolerance, and update its host range. Lecanosticta species have now been recorded in 44 countries, mostly in the northern hemisphere. The type species, L. acicola, has increased its range in recent years, and is present in 24 out of the 26 European countries where data were available. Other species of Lecanosticta are largely restricted to Mexico and Central America, and recently Colombia.The geo-database records demonstrate that L. acicola tolerates a wide range of climates across the northern hemisphere, and indicate its potential to colonise Pinus spp. forests across large swathes of the Europe. Pre-liminary analyses suggest L. acicola could affect 62% of global Pinus species area by the end of this century, under climate change predictions.Although its host range appears slightly narrower than the similar Dothistroma species, Lecanosticta species were recorded on 70 host taxa, mostly Pinus spp., but including, Cedrus and Picea spp. Twenty-three, including species of critical ecological, environmental and economic significance in Europe, are highly susceptible to L. acicola, suffering heavy defoliation and sometimes mortality. Variation in apparent susceptibility between reports could reflect variation between regions in the hosts' genetic make-up, but could also reflect the signif-icant variation in L. acicola populations and lineages found across Europe. This study served to highlight sig-nificant gaps in our understanding of the pathogen's behaviour.Lecanosticta acicola has recently been downgraded from an A1 quarantine pest to a regulated non quarantine pathogen, and is now widely distributed across Europe. With a need to consider disease management, this study also explored global BSNB strategies, and used Case Studies to summarise the tactics employed to date in Europe

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    A worldwide perspective on the management and control of Dothistroma needle blight

    Get PDF
    Dothistroma needle blight (DNB) caused by Dothistroma septosporum and Dothistroma pini is a damaging disease of pine in many countries. The disease led to the abandonment of planting susceptible Pinus species in parts of Africa, Asia, Australasia, Europe and North America. Although the disease can be effectively controlled using copper fungicides, this chemical is only routinely applied in forests in New Zealand and Australia. Other management tactics aimed at making conditions less favourable for disease development, such as thinning or pruning, may be effective on some, but not all, sites. Disease avoidance, by planting non-susceptible species, is the most common form of management in Europe, along with deployment of hosts with strong disease resistance. Although D. septosporum is present almost everywhere Pinus is grown, it is important that an effort is maintained to exclude introductions of new haplotypes that could increase virulence or enable host resistance to be overcome. A global strategy to exclude new introductions of Dothistroma and other damaging forest pathogens, facilitated by collaborative programmes and legislation, is needed.This study was partially supported by the EU COST Action FP1102 DIAROD (Determining Invasiveness and Risk of Dothistroma, http:// www.cost.eu/COST_Actions/fps/FP1102)http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1439-03292017-10-31hb2017Forestry and Agricultural Biotechnology Institute (FABI)GeneticsPlant Scienc

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The increasing threat to European forests from the invasive foliar pine pathogen, Lecanosticta acicola

    Get PDF
    European forests are threatened by increasing numbers of invasive pests and pathogens. Over the past century, Lecanosticta acicola, a foliar pathogen predominantly of Pinus spp., has expanded its range globally, and is increasing in impact. Lecanosticta acicola causes brown spot needle blight, resulting in premature defoliation, reduced growth, and mortality in some hosts. Originating from southern regions of North American, it devastated forests in the USA's southern states in the early twentieth century, and in 1942 was discovered in Spain. Derived from Euphresco project ‘Brownspotrisk,’ this study aimed to establish the current distribution of Lecanosticta species, and assess the risks of L. acicola to European forests. Pathogen reports from the literature, and new/ unpublished survey data were combined into an open-access geo-database (http://www.portalofforestpathology.com), and used to visualise the pathogen's range, infer its climatic tolerance, and update its host range. Lecanosticta species have now been recorded in 44 countries, mostly in the northern hemisphere. The type species, L. acicola, has increased its range in recent years, and is present in 24 out of the 26 European countries where data were available. Other species of Lecanosticta are largely restricted to Mexico and Central America, and recently Colombia. The geo-database records demonstrate that L. acicola tolerates a wide range of climates across the northern hemisphere, and indicate its potential to colonise Pinus spp. forests across large swathes of the Europe. Preliminary analyses suggest L. acicola could affect 62% of global Pinus species area by the end of this century, under climate change predictions. Although its host range appears slightly narrower than the similar Dothistroma species, Lecanosticta species were recorded on 70 host taxa, mostly Pinus spp., but including, Cedrus and Picea spp. Twenty-three, including species of critical ecological, environmental and economic significance in Europe, are highly susceptible to L. acicola, suffering heavy defoliation and sometimes mortality. Variation in apparent susceptibility between reports could reflect variation between regions in the hosts’ genetic make-up, but could also reflect the significant variation in L. acicola populations and lineages found across Europe. This study served to highlight significant gaps in our understanding of the pathogen's behaviour. Lecanosticta acicola has recently been downgraded from an A1 quarantine pest to a regulated non quarantine pathogen, and is now widely distributed across Europe. With a need to consider disease management, this study also explored global BSNB strategies, and used Case Studies to summarise the tactics employed to date in Europe

    Global geographic distribution and host range of Dothistroma species: a comprehensive review

    No full text
    Dothistroma needle blight (DNB) is one of the most important diseases of pine. Although its notoriety stems from Southern Hemisphere epidemics in Pinus radiata plantations, the disease has increased in prevalence and severity in areas of the Northern Hemisphere, including Europe, during the last two decades. This increase has largely been attributed to expanded planting of susceptible hosts, anthropogenic dispersal of the causative pathogens and changes in climate conducive to disease development. The last comprehensive review of DNB was published in 2004, with updates on geographic distribution and host species in 2009. Importantly, the recognition that two species, Dothistroma septosporum and D. pini, cause DNB emerged only relatively recently in 2004. These two species are morphologically very similar, and DNA- based techniques are needed to distinguish between them. Consequently, many records of host species affected or geographic location of DNB prior to 2004 are inconclusive or even misleading. The objectives of this review were (i) to provide a new database in which detailed records of DNB from 62 countries are collated; (ii) to chart the current global distribution of D. septosporum and D. pini; (iii) to list all known host species and to consider their susceptibility globally; (iv) to collate the published results of provenance trials; and (v) to consider the effects of site factors on disease incidence and severity. The review shows that DNB occurs in 76 countries, with D. septosporum confirmed to occur in 44 and D. pini in 13. There are now 109 documented Pinaceae host taxa for Dothistroma species, spanning six genera (Abies, Cedrus, Larix, Picea, Pinus and Pseudotsuga), with Pinus being the dominant host genus, accounting for 95 host taxa. The relative susceptibilities of these hosts to Dothistroma species are reported, providing a resource to inform species choice in forest planting. Country records show that most DNB outbreaks in Europe occur on Pinus nigra and its subspecies. It is anticipated that the collaborative work described in this review will both underpin a broader global research strategy to manage DNB in the future and provide a model for the study of other forest pathogens

    The DNA sequence and analysis of human chromosome 13

    No full text
    Chromosome 13 is the largest acrocentric human chromosome. It carries genes involved in cancer including the breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes, is frequently rearranged in B-cell chronic lymphocytic leukaemia, and contains the DAOA locus associated with bipolar disorder and schizophrenia. We describe completion and analysis of 95.5 megabases (Mb) of sequence from chromosome 13, which contains 633 genes and 296 pseudogenes. We estimate that more than 95.4% of the protein-coding genes of this chromosome have been identified, on the basis of comparison with other vertebrate genome sequences. Additionally, 105 putative non-coding RNA genes were found. Chromosome 13 has one of the lowest gene densities (6.5 genes per Mb) among human chromosomes, and contains a central region of 38 Mb where the gene density drops to only 3.1 genes per Mb

    The DNA sequence and analysis of human chromosome 6

    No full text
    corecore