14 research outputs found

    Clinical evaluation of iron treatment efficiency among non-anemic but iron-deficient female blood donors: a randomized controlled trial

    Get PDF
    ABSTRACT: Iron deficiency without anemia (IDWA) is related to adverse symptoms that can be relieved by supplementation. Since a blood donation can induce such an iron deficiency, we investigated the clinical impact of an iron treatment after blood donation. METHODS: One week after donation, we randomly assigned 154 female donors with IDWA aged <50 years to a 4-week oral treatment of ferrous sulfate vs. placebo. The main outcome was the change in the level of fatigue before and after the intervention. Also evaluated were aerobic capacity, mood disorder, quality of life, compliance and adverse events. Biological markers were hemoglobin and ferritin. RESULTS: Treatment effect from baseline to 4 weeks for hemoglobin and ferritin were 5.2 g/L (p < 0.01) and 14.8 ng/mL (p < 0.01) respectively. No significant clinical effect was observed for fatigue (-0.15 points, 95% confidence interval -0.9 to 0.6, p = 0.697) or for other outcomes. Compliance and interruption for side effects was similar in both groups. Additionally, blood donation did not induce overt symptoms of fatigue in spite of the significant biological changes it produces. CONCLUSIONS: These data are valuable as they enable us to conclude that donors with IDWA after a blood donation would not clinically benefit from iron supplementation. Trial registration: NCT00689793

    Anemia and Iron Deficiency — New Therapeutic Targets in Heart Failure?

    No full text

    Advantages and Applications of Cryopreservation in Fisheries Science

    No full text
    Cryopreservation is a long-term storage technique to preserve the biological material without deterioration for extended period of time at least several thousands of years. The ability to preserve and store both maternal and paternal gametes provides a reliable source of fish genetic material for scientific and aquaculture purposes as well as for conservation of biodiversity. Successful cryopreservation of fish sperm have been achieved for more than 200 fish species and many fish species have been adequated for the purpose of cryobanking. Cryopreservation of fish embryo is not viable, mainly because of the same limitations as in fish oocytes, i.e., high chilling sensitivity and low membrane permeability. However, cryopreservation of isolated embryonic cells is another option for preserving both maternal and paternal genome. In this paper, an overview of the current state of aquatic species is followed by a discussion on the sperm, embryos, oocytes and embryonic cells - blastomeres
    corecore