75 research outputs found

    Metal-mediated Peptide Assembly: Use Of Metal Coordination To Change The Oligornerization State Of An Alpha-helical Coiled-coil

    Get PDF
    Metal coordination is used to alter the oligomerization state of a designed peptide structure. The 30-residue polypeptide AQ-Pal21 4Pal21 contains two metal-binding 4-pyridylalanine (Pal) residues on its solvent-exposed surface and exists as a very stable two-stranded a-helical coiled-coil. Upon the addition of Pt(en)(NO3)(2), a significant conformational change to a metal-bridged, four-helix bundle is seen

    Formation Of Peptide Nanospheres And Nanofibrils By Metal Coordination

    Get PDF
    Two amphipathic polypeptides were coordinated to the cis positions of a square planar Pt(II) complex in order to provide the metal center with two noncovalent oligomerization domains. This resulted in the formation of new metal-peptide nanoassemblies which are shown to exist as nanometer-sized spheres and fibrils. Construction of these assemblies was based on the 30-residue polypeptide AQ-Pal14 which was designed for its ability to self-assemble into the common protein oligomerization motif of a noncovalent coiled-coil, and modified to contain a metal-binding 4-pyridylalanine residue at its surface. When AQ-Pal14 was reacted with Pt(en)(NO3)(2), a new metal-peptide complex was formed in which two AQ-Pal14 peptides were coordinated to a single metal center as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electrospray ionization mass spectrometry (ESI-MS). When the reaction mixture was analyzed under nondenaturing conditions by high performance size exclusion chromatography (HPSEC), it was found that all species present eluted at the column void volume, indicating the formation of very large metal-peptide assemblies. This was verified by multiangle light scattering (MALS) which showed that the metal-peptide assemblies have a weight-averaged molecular mass and z-average root-mean-square radius of M-W = (7 +/- 4) x 10(6) g/mol and R-Z = 18 +/- 4 nm, respectively. The presence of such nanometer scale assemblies was confirmed by transmission electron microscopy and atomic force microscopy which showed the existence of both spherical and fibrillar nanostructures

    Heparin modified polyethylene glycol microparticle aggregates for focal cancer chemotherapy

    Get PDF
    Focal cancer therapy can improve clinical outcomes. Here, we evaluated injectable heparin-containing hydrogel material loaded with doxorubicin as a focal breast cancer therapy. We utilized a binary heparin/polyethylene glycol (PEG) hydrogel that was processed post synthesis into hydrogel microparticle aggregates to yield a readily injectable hydrogel. When loaded with doxorubicin, the injectable hydrogel microparticle aggregates had excellent short- and long-term anticancer activity against human breast cancer cells in vitro. Efficacy as a focal anticancer therapy was also evaluated in vivo by local injection of the doxorubicin-loaded PEG-heparin hydrogel microparticle aggregates into mice with established human orthotopic breast tumours. Animals showed significant antitumour responses by reduction in both primary tumour growth and metastasis when compared to animals which received the equivalent doxorubicin dose via an intravenous bolus injection. Overall, PEG-heparin hydrogel microparticle aggregates are emerging as a potential anticancer drug delivery system for focal therapy

    Nano-biosupercapacitors enable autarkic sensor operation in blood

    Get PDF
    Today’s smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body

    Electrochemical approach for isolation of chitin from the skeleton of the black coral cirrhipathes sp. (Antipatharia)

    Get PDF
    The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of a-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
    corecore