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Abstract: Marine sponges remain representative of a unique source of renewable biological materials.
The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic
potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and
regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge
Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a
novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated
simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat
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chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of
the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes
differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the
suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results
reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds
coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus
cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition,
I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep
into the microtubes due to their excellent capillary effect. These findings are suggestive of the
future development of new sponge chitin-based absorbable hemostats as alternatives to already well
recognized cellulose-based fabrics.

Keywords: chitin; scaffold; marine sponges; cardiomyocytes; tissue engineering; hemostats;
wound dressing

1. Introduction

During the last 50 years, marine sponges belonging to the class Demospongiae (Porifera) have
been recognized as a high potential source of bioactive secondary metabolites (for review, see [1,2]),
as well as biological materials of proteinaceous [3] and polysaccharide [4–8] origin. Broad diversity of
secondary metabolites, mostly alkaloids and peptides, have been studied as potential antibacterial,
antiviral, antifungal, and anticancer agents [9,10]. Biological materials such as structural collagenous
proteinaceous spongin and aminopolysaccharide chitin have found applications in technology [3,11,12],
extreme biomimetics [13–18], electrochemistry [19], and tissue engineering [20–24]. Thus, demosponges
continue to be productive organisms for investigations of both marine pharmacology and biologically
inspired materials science. A critical factor is the ability of demosponges to regenerate tissues and
skeletons, and to grow under marine farming conditions [25,26] or under biotechnological sustainable
biomass production based on cell culture [27]. Consequently, the recent trend in practical applications
of demosponges is based on the development of approaches where both secondary metabolites and
biomaterials can be extracted simultaneously. Until now, selected demosponges have been extracted
with diverse organic reagents to isolate secondary metabolites, while the tissue and skeletal components
have not been utilized.

Since 2007, scientific interest in simultaneous extraction strategies of demosponges has focused on
sponge representatives of the order Verongiida within the class Demospongiae [4]. These sponges
are known to synthesize naturally prefabricated three-dimensional (3D) chitin scaffolds [4–6,8,28–31]
and contain highly biologically active bromotyrosines [2,32–34]. Biological reasons to produce
bromotyrosines, which are localized within spherulocytes [35,36] in skeletal chitinous fibers of
verongiids, are likely to be related to the inhibitory activity of these metabolites against microbial
chitinases [37]. Numerous experimental studies dedicated to determining the multitarget activities
of selected bromotyrosines have also confirmed antiviral [38], antibacterial [39], antiparasitic [40],
anti-inflammatory [41], antitumor [2,10], and enzyme-inhibitory and epigenetic [42] properties.

Skeletons of all verongiid demosponges studied so far (see overview [6,8]) are made of fibrous,
tubular, anastomozing chitinous 3D networks that are cylinder-like (i.e., sponges belonging to the family
Aplysinidae, [4,5,8,31]) or fan-shaped and flat (family Ianthellidae, [30,32,43]). The demosponges of the
Ianthellidae (Figure 1) have flat (up to 5 mm thick), naturally prefabricated chitin-based skeletons with
high biomimetic potential due to their ability to regenerate chitinous tissues in vivo [43]. We suggest
that these sponges are suitable as ready-to-use constructs to replace damaged skin fragments, or as
alternatives for wound dressing, including application after plastic surgery treatments.
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Figure 1. A fragment (20 × 10 cm) of the demosponge Ianthella labyrinthus after sampling (A) shows 
labyrinth-like surface morphology (B). It loses pigmentation immediately after placement into 
distillated water due to osmotic shock. 

In addition, we have reported previously that the chitinous skeletal structures of Ianthella 
sponges [30] have applications for tissue engineering of selected human bone marrow-derived 
mesenchymal stromal cells (hBMSCs) and human dermal MSCs [23,24]. 

In this study, for the first time, we focus our attention on Ianthella labyrinthus Bergquist & Kelly-
Borges, 1995 (Demospongiae: Verongiida: Ianthellidae) as a novel potential source for isolation of 
naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with 
bromotyrosines. Also for the first time, we choose human induced pluripotent stem cells (iPSC-CMs) 
to test the suitability of the I. labyrinthus chitinous scaffold for cell culture. The first experiments 
testing the ability of sponge chitin to absorb blood have also been carried out. 

2. Results and Discussion 

2.1. Isolation of 3D Chitin Scaffolds 

The body architecture of most representatives of the Ianthellidae is characterized by a fan-
shaped form [43–45]. In these sponges, tissues are localized on and within a mechanically rigid and 
dark-reddish pigmented meshwork which is produced by interconnected microtubular chitinous 
fibers (for details, see [30]). This mesh-like morphology becomes visible after insertion of the sponges 
(Figures 1 and 2) in distillated water, or following treatments with 2.5 M NaOH solution at 37 °C 
(Figure 3). Both kinds of extracts contain bromotyrosines and can be used for isolation, identification, 
and possible applications of these biologically active compounds [46–48] in separate future research. 

Figure 1. A fragment (20 × 10 cm) of the demosponge Ianthella labyrinthus after sampling (A) shows
labyrinth-like surface morphology (B). It loses pigmentation immediately after placement into distillated
water due to osmotic shock.

In addition, we have reported previously that the chitinous skeletal structures of Ianthella
sponges [30] have applications for tissue engineering of selected human bone marrow-derived
mesenchymal stromal cells (hBMSCs) and human dermal MSCs [23,24].

In this study, for the first time, we focus our attention on Ianthella labyrinthus Bergquist &
Kelly-Borges, 1995 (Demospongiae: Verongiida: Ianthellidae) as a novel potential source for isolation
of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with
bromotyrosines. Also for the first time, we choose human induced pluripotent stem cells (iPSC-CMs)
to test the suitability of the I. labyrinthus chitinous scaffold for cell culture. The first experiments testing
the ability of sponge chitin to absorb blood have also been carried out.

2. Results and Discussion

2.1. Isolation of 3D Chitin Scaffolds

The body architecture of most representatives of the Ianthellidae is characterized by a fan-shaped
form [43–45]. In these sponges, tissues are localized on and within a mechanically rigid and dark-reddish
pigmented meshwork which is produced by interconnected microtubular chitinous fibers (for details,
see [30]). This mesh-like morphology becomes visible after insertion of the sponges (Figures 1 and 2) in
distillated water, or following treatments with 2.5 M NaOH solution at 37 ◦C (Figure 3). Both kinds of
extracts contain bromotyrosines and can be used for isolation, identification, and possible applications
of these biologically active compounds [46–48] in separate future research.

Translucent, elastic, flat scaffolds (Figures 4 and 5) can be obtained from the cell-free skeleton
of I. labyrinthus after alternating treatments described below. These unique gauze fabric-like natural
constructs are able to be manually manipulated and assume the shape of corresponding hard surfaces
on which they are placed. This feature, together with an excellent ability to swell with diverse liquids
(Figure 6) in a few seconds (due to a capillary effect [8]), as well as structural stability after sterilization
up to 200 ◦C [49], may allow for practical application of such scaffolds in regenerative medicine using
the principles of tissue engineering.
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Figure 2. Typical flat mesh-like architecture of I. labyrinthus, mechanically rigid and pigmented, 
visible after 24 h insertion in distilled water at room temperature. Pigments and cell debris obtained 
due to osmotic shock have been partially removed from the skeleton using distilled water. 

 

Figure 3. Bromotyrosine-containing extract and bromotyrosine-containing flexible skeleton of I. 
labyrinthus after 48 h treatment with 2.5 M NaOH at 37 °C. 
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Figure 2. Typical flat mesh-like architecture of I. labyrinthus, mechanically rigid and pigmented, visible
after 24 h insertion in distilled water at room temperature. Pigments and cell debris obtained due to
osmotic shock have been partially removed from the skeleton using distilled water.
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Figure 5. Ready-to-use, flat 3D chitinous scaffold isolated from I. labyrinthus remains porous and is 
mechanically strong enough to be manually manipulated. 
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isolated after alternating use of acid and alkali treatments for 72 h at 37 ◦C.
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2.2. 3D Chitin Scaffold from I. labyrinthus as Model System for Tissue Engineering of Cardiomyocytes 

After positive results with the chitinous scaffolds of I. basta for cultivation of diverse hBMSCs 
and human dermal MSCs [23,24], we investigated the flat scaffolds of I. labyrinthus with respect to 
their application for growth of human iPSC-CMs. The aim of this research was to culture iPSC-
derived cardiac muscle cells, termed cardiomyocytes, using 3D sponge chitin-based scaffolds. As 
reported previously [50], fetal or neonatal rat cardiomyocytes were used for 3D tissue substitutes and 
were able to integrate structurally and functionally with host myocardial tissue when transplanted 
into injured myocardium. Consequently, we suggest that 3D chitin scaffolds may act as tissue 
mimicking geometrical constructs [51], and could be used as alternative models to investigate cardiac 
metabolism and cardiac remodeling and regeneration [52]. Thus, we chose iPSC-CMs to test the 
suitability of the isolated chitinous sponge scaffolds for cell culture. Contractile behavior over a 
longer culture period requires a stable adhesion to the surface material. iPSC-CMs spontaneously 
contract due to differentiation, leading to different populations of cardiac cells, including a small 
number of pacemaker-like cells [53]. The cultivation of iPSC-CMs was investigated on pure chitin 
scaffolds, in comparison to material that was pre-coated with the extracellular matrix mimetic 
Geltrex®, which is used in standard iPSC-CM culture approaches using commercial plastic plates 
(Figure 7). Documentation of cell attachment and behavior using these materials is challenging, 
because of the 3D structure. 

Figure 6. Chitinous 3D scaffolds isolated from I. labyrinthus showing a microtubular, interconnected
meshwork. These microtubes are able to absorb water, as well as media, for cultivation of cells due to
capillary forces. The porous space is filled with air.

2.2. 3D Chitin Scaffold from I. labyrinthus as Model System for Tissue Engineering of Cardiomyocytes

After positive results with the chitinous scaffolds of I. basta for cultivation of diverse hBMSCs
and human dermal MSCs [23,24], we investigated the flat scaffolds of I. labyrinthus with respect to
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their application for growth of human iPSC-CMs. The aim of this research was to culture iPSC-derived
cardiac muscle cells, termed cardiomyocytes, using 3D sponge chitin-based scaffolds. As reported
previously [50], fetal or neonatal rat cardiomyocytes were used for 3D tissue substitutes and were able
to integrate structurally and functionally with host myocardial tissue when transplanted into injured
myocardium. Consequently, we suggest that 3D chitin scaffolds may act as tissue mimicking geometrical
constructs [51], and could be used as alternative models to investigate cardiac metabolism and cardiac
remodeling and regeneration [52]. Thus, we chose iPSC-CMs to test the suitability of the isolated
chitinous sponge scaffolds for cell culture. Contractile behavior over a longer culture period requires
a stable adhesion to the surface material. iPSC-CMs spontaneously contract due to differentiation,
leading to different populations of cardiac cells, including a small number of pacemaker-like cells [53].
The cultivation of iPSC-CMs was investigated on pure chitin scaffolds, in comparison to material that
was pre-coated with the extracellular matrix mimetic Geltrex®, which is used in standard iPSC-CM
culture approaches using commercial plastic plates (Figure 7). Documentation of cell attachment and
behavior using these materials is challenging, because of the 3D structure.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 20 

 

 
Figure 7. Evaluation of I. labyrinthus structures to culture iPSC-derived cardiomyocytes. (A) Schematic 
image of sponge structures cultured in transwell plates with low medium levels, 8-week-old iPSC-
CMs were supplied by medium absorbed by the sponge structure and cultured in uncoated and 
Geltrex®-coated sponge scaffolds for 20 days. (B) Microscopic images of sponge scaffold. iPSC-CMs 
were visualized using phase contrast microscopy. Images from two experiments performed using 
iPSC-CMs from different healthy donors. See also respective video files in the Supplementary 
Materials. 

After seeding, iPSC-CMs adhered on the coated, as well as uncoated, scaffolds. Microscopic 
documentation revealed beating iPSC-CMs 24 h after seeding, which is comparable to the behavior 
observed using standard commercially available culture materials (Supplementary Materials Video 
1). Over the culture period of 20 days, iPSC-CMs showed stable contraction behavior and formed 
contracting cell clusters, which connected different chitin fibers (Figure 7). Contractions of these 
clusters and deformation of the material were visible even using low magnification (Figure 7 and 
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To analyze the distribution, structural organization, and proliferation of iPSC-CMs, α-actinin, 
Ki-67, and cell nuclei were stained and visualized using fluorescence microscopy. To compare the 
distribution of iPSC-CMs on natural and Geltrex®-coated scaffolds, phase contrast images were 
combined via multi-dimensional detection mode (images obtained with 4x magnification, XY 
stitching). To specify the signals to attached cells, Hoechst33342 signals were detected, because the 
intensity of this dye can be detected at lower magnifications (Figure 8). The overview images of the 
sponge scaffolds illustrate the distribution of the iPSC-CMs over the complete chitin structures in 
Geltrex®-coated, as well as in uncoated, sponge scaffolds. 

Figure 7. Evaluation of I. labyrinthus structures to culture iPSC-derived cardiomyocytes. (A) Schematic
image of sponge structures cultured in transwell plates with low medium levels, 8-week-old
iPSC-CMs were supplied by medium absorbed by the sponge structure and cultured in uncoated and
Geltrex®-coated sponge scaffolds for 20 days. (B) Microscopic images of sponge scaffold. iPSC-CMs
were visualized using phase contrast microscopy. Images from two experiments performed using
iPSC-CMs from different healthy donors. See also respective video files in the Supplementary Materials.

After seeding, iPSC-CMs adhered on the coated, as well as uncoated, scaffolds. Microscopic
documentation revealed beating iPSC-CMs 24 h after seeding, which is comparable to the behavior
observed using standard commercially available culture materials (Supplementary Materials Video
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1). Over the culture period of 20 days, iPSC-CMs showed stable contraction behavior and formed
contracting cell clusters, which connected different chitin fibers (Figure 7). Contractions of these
clusters and deformation of the material were visible even using low magnification (Figure 7 and
Supplementary Materials Video 1).

To analyze the distribution, structural organization, and proliferation of iPSC-CMs,α-actinin, Ki-67,
and cell nuclei were stained and visualized using fluorescence microscopy. To compare the distribution
of iPSC-CMs on natural and Geltrex®-coated scaffolds, phase contrast images were combined via
multi-dimensional detection mode (images obtained with 4×magnification, XY stitching). To specify
the signals to attached cells, Hoechst33342 signals were detected, because the intensity of this dye can
be detected at lower magnifications (Figure 8). The overview images of the sponge scaffolds illustrate
the distribution of the iPSC-CMs over the complete chitin structures in Geltrex®-coated, as well as in
uncoated, sponge scaffolds.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 20 
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labyrinthus. Representative images of 1-month-old iPSC-CMs that were cultured in chitin scaffolds for 
20 days. Cell nuclei were stained with Hoechst33342, blue. (A, C) Overview images of Geltrex-coated 
(A) and uncoated (C) chitin scaffolds. (B, D) Higher magnification of areas indicated in (A) and (C), 
respectively. 

Z-stacking of single images was performed to illustrate cell attachment in the 3D scaffold. α-
actinin is a structural marker for the detection of sarcomere units in cardiomyocytes (Figure 9A). We 
can clearly observe that iPSC-CMs oriented parallel to the long axis of the chitin scaffolds, as 
demonstrated by the repeatable, regular positioning of the sarcomeres in iPSC-CMs attached to the 
chitin scaffolds (Figure 9A). With respect to this point, it is important to explain that stretching forces 
[54] were characterized as important stimuli to induce the structural and functional maturation of 
iPSC-CMs—for example, in engineered heart muscles (EHMs) [55]. Future studies should be focused 
on the quantitative analysis of cardiomyocyte alignment on the chitin scaffolds in comparison to two-
dimensional (2D) monolayer culture of iPSC-CMs and to 3D EHMs as described previously [55]. A 
reliable, robust quantification method is required when alignment is determined based on structural 
markers [56,57]. 

Proliferation of the iPSC-CMs on the sponge scaffolds was investigated using the marker protein 
Ki-67, which has been used to quantify CM proliferation in different studies [58,59]. Proliferating cells 
are indicated by the colocalization of Ki-67 with cell nuclei (Figure 9A). Relative quantification was 
performed by cell counting based on different images from two independent experiments (Figure 9B, 
C, total of >300 cells per experiment). The fraction of positive cells was determined with 4.7 ± 0.7% 
Geltrex®-coated and 7.1 ± 1.8% in pure, uncoated scaffolds. These results are comparable to other 
reports, which demonstrate approximately 5% Ki-67 positive cells in a population of 1-month-old 
iPSC-CMs [58,59]. 

Figure 8. Distribution of iPSC-CMs on Geltrex®-coated versus uncoated chitin scaffolds of I. labyrinthus.
Representative images of 1-month-old iPSC-CMs that were cultured in chitin scaffolds for 20 days.
Cell nuclei were stained with Hoechst33342, blue. (A,C) Overview images of Geltrex-coated (A) and
uncoated (C) chitin scaffolds. (B,D) Higher magnification of areas indicated in (A) and (C), respectively.

Z-stacking of single images was performed to illustrate cell attachment in the 3D scaffold. α-actinin
is a structural marker for the detection of sarcomere units in cardiomyocytes (Figure 9A). We can
clearly observe that iPSC-CMs oriented parallel to the long axis of the chitin scaffolds, as demonstrated
by the repeatable, regular positioning of the sarcomeres in iPSC-CMs attached to the chitin scaffolds
(Figure 9A). With respect to this point, it is important to explain that stretching forces [54] were
characterized as important stimuli to induce the structural and functional maturation of iPSC-CMs—for
example, in engineered heart muscles (EHMs) [55]. Future studies should be focused on the quantitative
analysis of cardiomyocyte alignment on the chitin scaffolds in comparison to two-dimensional (2D)
monolayer culture of iPSC-CMs and to 3D EHMs as described previously [55]. A reliable, robust
quantification method is required when alignment is determined based on structural markers [56,57].

Proliferation of the iPSC-CMs on the sponge scaffolds was investigated using the marker protein
Ki-67, which has been used to quantify CM proliferation in different studies [58,59]. Proliferating cells
are indicated by the colocalization of Ki-67 with cell nuclei (Figure 9A). Relative quantification was
performed by cell counting based on different images from two independent experiments (Figure 9B,C,
total of >300 cells per experiment). The fraction of positive cells was determined with 4.7 ± 0.7%
Geltrex®-coated and 7.1 ± 1.8% in pure, uncoated scaffolds. These results are comparable to other
reports, which demonstrate approximately 5% Ki-67 positive cells in a population of 1-month-old
iPSC-CMs [58,59].
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iPSC-CMs on I. labyrinthus scaffolds. Left panel shows fluorescence channels of α-actinin (green), Ki-
67 (magenta), and nuclei (blue), middle panel represents brightfield image, and right panel overlay 
of brightfield and fluorescence channels. (A) iPSC-CMs on Geltrex®-coated scaffold representing 
sarcomere structures of cells attached to a chitin fiber and the presence of a minor population of Ki-
67 positive cells. (B, C) Representative images of iPSC-CMs on Geltrex®-coated and uncoated sponge 
scaffolds. 

Furthermore, an orthogonal view was projected from stacks of 90–250 images in different z-
orientations (50–150 µm height) to characterize iPSC-CM attachment around chitin fibers in 3D 
(Figure 10). The overall signals (sum of all images) in Figure 10A–E demonstrate the attachment of 
iPSC-CMs along a chitin fiber, based on localization of α-actinin and cell nuclei signals. However, 
analysis of specific regions in defined z-positions, indicated by red lines in YZ-projections, 
demonstrate that iPSC-CMs attached to the upper surface (Figure 10D), the side areas (Figure 10E), 
as well as the bottom of the chitin fibers (Figure 10F). 

Figure 9. Staining of α-actinin, Ki-67, and cell nuclei to document cell alignment and proliferation
of iPSC-CMs on I. labyrinthus scaffolds. Left panel shows fluorescence channels of α-actinin (green),
Ki-67 (magenta), and nuclei (blue), middle panel represents brightfield image, and right panel overlay
of brightfield and fluorescence channels. (A) iPSC-CMs on Geltrex®-coated scaffold representing
sarcomere structures of cells attached to a chitin fiber and the presence of a minor population of
Ki-67 positive cells. (B,C) Representative images of iPSC-CMs on Geltrex®-coated and uncoated
sponge scaffolds.

Furthermore, an orthogonal view was projected from stacks of 90–250 images in different
z-orientations (50–150 µm height) to characterize iPSC-CM attachment around chitin fibers in 3D
(Figure 10). The overall signals (sum of all images) in Figure 10A–E demonstrate the attachment of
iPSC-CMs along a chitin fiber, based on localization of α-actinin and cell nuclei signals. However,
analysis of specific regions in defined z-positions, indicated by red lines in YZ-projections, demonstrate
that iPSC-CMs attached to the upper surface (Figure 10D), the side areas (Figure 10E), as well as the
bottom of the chitin fibers (Figure 10F).

The focus of these initial experiments was to investigate the biocompatibility of the prefabricated
I. labyrinthus chitinous scaffolds to culture iPSC-CMs. Definitively, further studies may be performed
to examine the cell adhesion rates of iPSC-CMs using these natural constructs, especially on large-size
matrices. Taken together, our findings provide the basis for further studies to investigate the use of I.
labyrinthus scaffolds in advanced iPSC-CM culture models as engineered heart muscles (EHMs, [55]).
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Figure 10. Documentation of iPSC-CM attachment using fluorescence microscopy. Images of iPSC-CMs
on I. labyrinthus chitin scaffolds (marked as “sponge”) have been obtained as z-stacks of 90–250 images
using confocal laser scanning microscopy. (A–C,G–I) Combined images of all z-stacks in this area.
(D–F,J–L) Combined images of different z-positions indicated by the red line in yz-plots.

Beyond the scope of this study, the investigation of further aspects, especially with respect to
the structural and functional maturation of iPSC-CMs, as well as the culture in combination with
cardiac fibroblasts, are inevitable to clarify the potential of I. labyrinthus scaffolds for cardiac tissue
engineering. These aspects will further enable the determination of quantitative data and thus the
comparison of chitin scaffolds to other materials described for the cultivation of iPSC-CMs and cardiac
tissue engineering, including using decellularized hearts (reviewed by [60]), plant scaffolds [61],
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and hydrogels [62]. Previous studies further highlight the lack of a vascular network as a major
limitation of current tissue engineering approaches, because the oxygen diffusion limit in tissues
is approximately 100–200 µm [61], and recent studies have tried to address this issue using porous
scaffolds [63]. Here, it will be interesting to study whether the mesoporous structure of the chitin
scaffolds may have positive effects on cell survival in bigger EHMs and offer the possibility to integrate
endothelial cells in an advanced model system, as performed for decellularized leaf structures [61].

2.3. 3D Chitin Scaffolds of Poriferan Origin as Alternative Gauze Fabrics

One possible application of bandage-like chitinous materials extracted from I. labyrinthus (Figure 11)
may be hemostatic dressing for healing severe hemorrhagic wounds. Blood comprises a large amount
of water, therefore the hemostatic materials should be highly absorbent and characterized by a high
proportion of swelling fibril bundles, and present moisture wicking properties [64]. It has already been
shown that chitin of crustacean origin induces blood coagulation by adhering to platelets, forming
a chitin/platelet complex that promotes the polymerization of the fibrin monomer to form a blood
clot (for review, see [65]). Additionally, chitin applied to wounds may attract histiocytes containing
abundant lysozyme. As a result, at the early stage of wounds, the chitin dressing may induce fibroblasts
to produce fine type III collagen through histiocytes [66]. In fact, several studies have been carried out
on chitin in the form of nanocrystals [67] or powders [64] and non-woven fabrics [65] as a potential
hemostatic biomaterial. To overcome the technical limitations associated with the transformation of
chitin nanopowder to fibrillar material, we propose the scientific community evaluate the hemostatic
properties in future clinical settings for 3D-structured sponge chitins, including those from I. labyrinthus.
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Figure 11. Gauze fabric-like morphology of chitinous scaffold isolated from I. labyrinthus. Such flexible
biomaterial can be easily placed on the surface of human skin.

Our first experiments (Figure 12) demonstrate that I. labyrinthus chitinous scaffold immediately
absorbs blood of swine origin (obtained from a butcher shop) from the surface of skin (Figure 12A).
In contrast to a similar experiment with synthetic gauze fabric (Figure 13), sponge chitin is able to
absorb blood deep into the microtubes (Figure 12E,F) immediately due to excellent capillary effects.
This suggests future investigation into the possible application of such ready-to-use chitinous constructs
for storage of absorbed blood (including DNA) using corresponding cryopreservation techniques.
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Figure 12. Chitinous scaffold isolated from I. labyrinthus can immediately absorb pig blood (A–D)
from the skin surface. The blood is “sucked out” and located within the chitinous microtubes (E,F) in
contrast to synthetic bandage (Figure 13), where blood is adsorbed on the surface and in the interspace
of the monolithic, non-tubular microfibers. Pig blood (Südost-Fleisch GmbH, Altenburg, Germany).

We suggest that the utilization of a naturally pre-structured fibrillar chitin scaffold of poriferan
origin can be an important step of determining improved hemostatic dressings. Additional studies
are required to determine the different outcomes that may result from their use, particularly in
terms of potential adverse effects and safety. A sustained effort is needed to discover novel and
safer hemostatics, mainly in countries in which there is limited access to the currently available
agents [68]. This will require future comprehensive study, including the following steps: (i) Erythrocyte
agglutination test; (ii) blood interaction test; (iii) sorption of blood; and (iv) complete blood count
test. Such analyses could examine the effectiveness and the mechanism of sponge chitin interaction
with human blood under in vitro and in vivo conditions [69]. Additionally, it is necessary to evaluate
biological performance of sponge chitin-based absorbable hemostats, and to compare with reports for
cellulose-based materials [70].
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was located on the surface of corresponding monolithic fibers, as well as between them (D).

3. Materials and Methods

3.1. Location and Collection

The sponge Ianthella labyrinthus (WAM Z87073) was collected by J. Fromont and L. Kirkendale at
station SOL47/W/A042 (15◦36’46.10” S, 124◦04’22.92” E to 15◦36’44.77” S, 124◦04’22.38” E), Kimberley,
Western Australia in March 2015 at depth of 35.3–35.5 m. Morphological identification was supported
by molecular barcoding and comparison against reference material of I. labyrinthus and other Ianthella
spp. from the Western Australian Museum using the 28 S rRNA C-region barcoding for sponges.
(see [71] for methodological details).

3.2. Isolation of Chitinous Skeleton from the Sponge and Identification of Selected Bromotyrosines

The procedure for isolation of chitin-based scaffolds from Ianthellidae sponges, as reported by
us [30,72], was followed here. In brief, it involved the following steps: (i) Sponge skeleton (Figure 1A)
was washed three times with distilled water for removal of water-soluble compounds, and then
bromotyrosines were extracted with methanol (Figure 1B); (ii) residual fragments were placed into
plastic boxes with 2.5 M NaOH at 37 ◦C for 72 h to remove cells, proteins, and pigments; (iii) samples
were treated with 20% acetic acid at 37 ◦C for a period of 5–8 h to remove residual calcium carbonates,
and then washed in distilled water up to pH 6.8. This isolation procedure was repeated three times to
obtain colorless tubular scaffolds (Figures 4, 5 and 7). The purity of isolated chitin scaffolds has been
proved according to standard analytical procedures as described previously [30].

The methanolic extracts of sponge fragments represented in Figure 1 were analyzed using a
Shimadzu HPLC system, coupled to a UV-VIS detector (Shimadzu, USA; Waters SunFire Prep OBD
C18 column (30 × 75 mm)). Routine detection was at 215 and 241 nm. A solvent system consisting
of MeCN (A) and H2O (B) at a gradient increasing linearly from 0 to 100% was used for compound
separation. LCMS analyses were carried out on an Agilent 1100 (Agilent, USA) LC system equipped
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with a G1956 MSD detector. Zorbax C18 RR column was used, and gradient elution with 0.1% HCOOH
in H2O–MeCN was applied.

Identification of the substances was based on LCMS spectra and the data were compared with the
literature. The compound was a simple bromotyrosine derivative with four bromines (m/z 698 (1),
700 (4), 702 (6), 704 (4), 706 (1)) and was consistent with a molecular formula C21H23Br4N3O4. These
data suggest the compound was aplysamine 4 [73] or aplysamine 8 [74].

3.3. Stereomicroscopy Imaging

Photographic images were taken with a Keyence VHX-6000 digital optical microscope. We used
pig blood (Südost-Fleisch GmbH, Altenburg, Germany) [8] and Bandage Aluderm® (W. SÖHNGEN
GmbH, Germany) gauze fabric for comparative experiments (see Figures 11 and 12).

3.4. Differentiation and Culture of Human iPSC-CMs

The sponge chitinous scaffolds were prepared and autoclaved in PBS (Sigma-Aldrich,
D8537-500 mL, St. Louis, Missouri, USA). Sterile scaffolds were cut in and pre-incubated either
with the extracellular matrix mimetic Geltrex® (Thermo Fisher Scientific, 2 mg/mL in DMEM, Waltham,
MA, USA) or DMEM (Thermo Fisher Scientific, DMEM-F12 + l-Glutamine) as a control for 1.5 h at
37 ◦C. To obtain cardiomyocytes from iPSCs, cells were differentiated using the modulators CHIR99021
(day 0, start of differentiation) and IWP2 (day 2) according to established protocols [75,76]. iPSC-CMs
differentiated from iPSCs lines created from two healthy patients (iBM76.3 and iWTD2.3) were tested in
this study to account for variabilities in individual genetic background. After differentiation, iPSC-CMs
were maintained in standard cardiomyocyte medium (RPMI1640 medium (Thermo Fisher Scientific)
with 2% B27 supplement (Thermo Fisher Scientific) at 37 ◦C, 5% CO2. After one month of maturation
(days 28–35), beating iPSC-CMs were detached using collagenase B (1 mg/ml) for 30–60 min at 37 ◦C
and transferred into fresh reaction tubes. iPSC-CMs were singularized by digestion in trypsin/EDTA
(Thermo Fisher Scientific, 0.25% Trypsin-EDTA) for 8 min at 37 ◦C. Subsequently, iPSC-CMs were
resuspended in digestion medium (RPMI1640, 2% B27 supplement, 15% FBS, 2 µM thiazovivin) in
a density of 3 million cells/mL. Sponge scaffolds were incubated in a volume of 150 µL iPSC-CM
suspension overnight for 12–16 h at 37 ◦C. Afterwards, sponge scaffolds were carefully transferred
to a transwell plate (Costar, 6 Transwell Well Plate, 24 mm Insert) prepared with 2.5 mL standard
cardiomyocyte medium. iPSC-CMs on chitin scaffolds were cultured for 20 days with medium
exchange every 2–3 days. Documentation of the cultures was performed using light microscopy
(Axiovert100 equipped with Leica MC170 HD camera, Jena, Germany).

3.5. Immunostaining and Fluorescence Microscopy

After 20 days, iPSC-CM cultures were carefully washed 2 times with PBS (Sigma-Aldrich) and
fixed in ice cold methanol (VWR, Radnor, PA, USA)–acetone (Merck, Darmstadt, Germany) solution
(MeOH/Ac ratio 7:3 v/v) for 10 min at –20 ◦C. Fixed samples were washed 3 times with PBS at
room temperature (RT) and blocked in PBS with 1% BSA (Sigma-Aldrich) and 0.1% TritonX-100
(Ferak) overnight. Samples were transferred to a 35 mm dish with glass bottom (MatTek, Ashland,
MA, USA). Samples were incubated in primary antibody solution containing mouse anti-α-actinin
(Sigma-Aldrich, A7811-100UL, 1:500) and rabbit anti Ki-67 (Abcam, ab833, 1:400, Cambridge, UK) in
PBS with 1% BSA overnight at 4 ◦C. Afterwards, samples were washed 3 times with PBS at RT and
incubated with a second antibody solution containing AlexaFluor488-labeled goat anti-mouse (Thermo
Fisher Scientific, A11001, 1:1000, Waltham, MA, USA) and AlexaFluor546-labeled goat anti-rabbit
(Life technologies, A11035, 1:1000) antibody conjugates for 1 h at RT. Cell nuclei were stained with
Hoechst33342 (molecular probes, H3570, 1:800) for 10 min at RT. Stained samples were washed 3 times
with PBS, prepared in Flouromount-G (SouthernBiotech, Birmingham, AL, USA), and stored at 4 ◦C
until imaging. Negative controls (incubation with secondary antibody only) were performed to
evaluate the specificity of the staining. Overview pictures of chitin scaffolds were observed with
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a Keyence BZ-X710 imaging platform and multi-dimensional capture mode (XY-Stitching, phase
contrast and Hoechst33342 channel). Fluorescence images to characterize iPSC-CM attachment to the
scaffolds and to quantify the population of Ki-67 positive cells were obtained with a confocal laser scan
microscope (LSM880) at the imaging facility of TU Dresden. To create the images of specific regions,
z-stacking of 3–5 images was captured and analyzed (2.5–10 µm z-range) using ImageJ software
(sum/max of intensities). Brightness and contrast were processed for each individual image. Relative
quantification of Ki-67 positive cells was performed by manual counting of at least 300 cells from 3D
reconstructions of different regions of each sample using ImageJ.

4. Conclusions

Industrially obtained chitin of crustaceans or fungal origin requires numerous unit operations
and technological processes to transform it from powders or flakes into sponge-like materials or foams.
It is technologically difficult and as a result, it is not economically feasible or ecologically friendly.
The isolation of chitinous 3D naturally pre-designed scaffolds from marine sponges opens the gate to
overcome these difficulties. Chitin of poriferan origin has been recently recognized as a renewable
source of unique naturally prefabricated 3D constructs. Diversity in size, shape, and porosity of such
chitin is based on structural peculiarities of the original sponge skeletons. Ianthellids can obtain
good growth under marine farming conditions due to special ability to regenerate their chitin-based
skeletal structures very quickly (12 cm in year [43]). Additionally, it has been proven that chitinous
scaffolds of poriferan origin possess tubular structure and remarkable swelling properties [8], due to
capillary forces and the porosity of these materials, which evolved due to millions of years and
are evolutionarily optimized to support the cell growth and proliferation. Due to high thermal
stability [16,18,49], chitin-based materials can be sterilized by autoclaving at 121 ◦C [77]. Here, we show
that the demosponge I. labyrinthus has remarkable biomimetic potentialities, as a source of natural
compounds useful for pharmaceutical industry and of new biomaterials for tissue engineering and
regenerative medicine, simultaneously. In this work, we have demonstrated that the chitin-based
skeleton, after bromotyrosines extraction, is a suitable scaffold for iPSC-CM cultivation. The peculiar
microtubular organization of the I. labyrinthus skeleton is also able to absorb water and blood, suggesting
a biomimetic approach for new generation of hemostats, with higher performances compared to the
cellulose-based ones traditionally used in clinics.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/20/
5105/s1; Supplementary Video 1: iPSC-derived cardiomyocytes on Geltrex-coated (left) and uncoated (right) chitin
scaffolds of I. labyrinthus. Cells on chitin scaffolds were cultured in transwell plates with low medium levels for 20
days. Videos were obtained using phase contrast microscopy (30 fps); Supplementary Video 2: 3D reconstruction
of iPSC-CM layer on I. labyrinthus chitin scaffolds from fluorescence microscopy images. Colors represent α-actinin
(green) and Ki-67 (magenta) and cell nuclei (blue). Based on the 3D reconstructions, colocalization of Ki-67 and
nuclei was determined to quantify cell proliferation.
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