21 research outputs found

    Measurement of Brain Function of Car Driver Using Functional Near-Infrared Spectroscopy (fNIRS)

    Get PDF
    The aim of this study is to propose a method for analyzing measured signal obtained from functional Near-Infrared Spectroscopy (fNIRS), which is applicable for neuroimaging studies for car drivers. We developed a signal processing method by multiresolution analysis (MRA) based on discrete wavelet transform. Statistical group analysis using Z-score is conducted after the extraction of task-related signal using MRA. Brain activities of subjects with different level of mental calculation are measured by fNIRS and fMRI. Results of mental calculation with nine subjects by using fNIRS and fMRI showed that the proposed methods were effective for the evaluation of brain activities due to the task. Finally, the proposed method is applied for evaluating brain function of car driver with and without adaptive cruise control (ACC) system for demonstrating the effectiveness of the proposed method. The results showed that frontal lobe was less active when the subject drove with ACC

    Measurement and Evaluation of Brain Activity for Train Drivers Using Wearable NIRS

    Get PDF
    Human errors of train drivers may cause serious damage. Therefore, research on human error prevention has been conducted by many researchers. In this context, brain activity measurement of train drivers using near-infrared spectroscopy (NIRS) has been conducted to monitor the condition of train drivers. In this study, we developed a compact wireless wearable NIRS that can be used in natural environments. The wearable NIRS has been used to measure train drivers’ brain function using a train driving simulator. Experimental results showed that brain activity of the dorsolateral prefrontal cortex (DLPFC) increased when the driver made braking operation. The experiment for train driving with an accidental event was carried out to evaluate the relation between drivers’ attention and the brain activity. As a result, there was a difference in brain activity between with and without prior notice. Results showed that the increased attention of the train driver can be shown in the NIRS signal from the outer part of the prefrontal cortex

    Monitoring the Condition of Railway Tracks Using a Convolutional Neural Network

    Get PDF
    Condition monitoring of railway tracks is effective for the sake of an increase in the safety of regional railways. This study proposes a new method for automatically classifying the type and degradation level of track fault using a convolutional neural network (CNN), which is a machine learning method, by imaging car body acceleration on a time-frequency plane by continuous wavelet transform. As a result of applying this method to the data measured in regional railways, it was possible to classify and extract the sections that need repair according to the degree of deterioration of the tracks, and to identify the track fault in those sections

    Development of Track Condition Monitoring System Using Onboard Sensing Device

    Get PDF
    Monitoring the conditions of railway tracks is essential for ensuring the railway safety. In-service vehicles equipped with sensors and GPS systems can act as probes to detect and analyse real-time vehicle vibration. Recently, a compact on-board sensing device has been developed. This chapter describes the track condition monitoring system that uses a compact on-board sensing device and diagnosis software. The diagnosis software provides the function of detecting track faults using the root mean square (RMS) of the car-body acceleration. It also allows analysis in the time-frequency domain using wavelet transform. A monitoring experiment in a local railway line showed that the system is effective for practical application

    Track Condition Monitoring Based on In-Service Train Vibration Data Using Smartphones

    Get PDF
    Although track maintenance is important, many operators of regional railway with limited financial resources are unable to conduct sufficient track inspections. In response to this problem, a track condition diagnosis system using car-body vibration sensors has been developed. In this study, a track condition monitoring system using a smartphone for general use has been developed. A technique for identifying train location using global navigation satellite system (GNSS) speed is proposed. The results of field testing shows that track condition diagnosis is possible using a smartphone-based monitoring system

    Condition Monitoring of Railway Tracks from Car-Body Vibration Using a Machine Learning Technique

    No full text
    A track condition monitoring system that uses a compact on-board sensing device has been developed and applied for track condition monitoring of regional railway lines in Japan. Monitoring examples show that the system is effective for regional railway operators. A classifier for track faults has been developed to detect track fault automatically. Simulation studies using SIMPACK and field tests were carried out to detect and isolate the track faults from car-body vibration. The results show that the feature of track faults is extracted from car-body vibration and classified from proposed feature space using machine learning techniques
    corecore