
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800



Chapter

Monitoring the Condition of
Railway Tracks Using a
Convolutional Neural Network
Hitoshi Tsunashima and Masashi Takikawa

Abstract

Condition monitoring of railway tracks is effective for the sake of an increase in
the safety of regional railways. This study proposes a new method for automatically
classifying the type and degradation level of track fault using a convolutional neural
network (CNN), which is a machine learning method, by imaging car body accelera-
tion on a time-frequency plane by continuous wavelet transform. As a result of
applying this method to the data measured in regional railways, it was possible to
classify and extract the sections that need repair according to the degree of
deterioration of the tracks, and to identify the track fault in those sections.

Keywords: railway, track, condition monitoring, wavelet, convolutional neural
network

1. Introduction

Maintenance of railway tracks is essential for the safe operation of trains. Railway
operators conduct track inspections using track geometry cars and track maintenance
crews. However, regional railway operators, who carry fewer passengers, often lack
the personnel and funds to conduct adequate track inspections. The monitoring of
railway track geometry from an in-service vehicle has become increasingly attractive
over the past decade [1].

To address this problem, a system that can monitor the track condition inexpen-
sively and frequently using a device incorporating sensors and a global navigation
satellite system (GNSS) unit, which is installed on in-service trains, has been devel-
oped [2, 3]. The system calculates root mean square (RMS) values from the vertical
acceleration, lateral acceleration, and roll angular velocity of the car body. To select
sites for repair, we adopt the method of prioritizing sites with the highest numerical
values.

The acceleration RMS is closely related to the general health of the track [4]. In
Ref. [5], RMS values are used to identify track irregularities for longitudinal level,
alignment, cross-level. However, monitoring based on RMS values alone is not suffi-
cient. Without frequency information, it is difficult to identify the type of track fault.
Furthermore, since the amount of data generated by constant measurement is
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enormous, it is necessary to automate the analysis in order to monitor and predict the
track condition efficiently.

In this study, we propose a method to classify the types of track faults automati-
cally by means of machine learning, using a CNN trained on images created via a
CWT from the vibration acceleration on the time-frequency plane. A continuous
wavelet transform (CWT) is a transformation technique that emphasizes certain
portions of the waveform by suppressing other portions as it proceeds by multiplying
a target waveform using a mother wavelet [6]. A convolutional neural network
(CNN) is a class of deep neural networks. It is widely used for image recognition.

To verify the effectiveness of the algorithm we developed, we first describe the
results of simulating the vibration of a car body when passing over a faulty track.
Next, we describe the results of diagnosing track faults from the vertical vibration
acceleration data of a car body measured by a regional railway.

2. Literature review of track condition monitoring using machine learning
techniques

It should be necessary for railway operators to control track irregularity, such as
vertical rail profiles, lateral alignment, gauge, cross-level, twist (depicted in Figure 1)
properly. Track irregularities cause vehicle vibrations that degrade the rider’s comfort
and increase the risk of derailments. Track irregularities are strongly correlated with
vehicle vibrations. Thus, it can be possible to estimate general trends of the track
condition by analyzing vehicle vibrations.

Although track geometry measurement systems using in-service vehicles are
becoming increasingly attractive around the world [2, 7–9], the repeated checking of
the same track provides the information regarding track geometry degradation, which
can be fed back to the track maintenance section for taking essential actions. The use
of vehicle responses in the track geometry assessment process allows identifying of

Figure 1.
Track structure and irregularities.
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critical defects, which could not have been identified from geometry parameters, and
thus, improve the maintenance operations.

Tsunashima et al. proposed techniques of condition monitoring of railway tracks
based on time-frequency analysis [10]. They compared the performance of Hilbert-
Huang transforms (HHT) and CWT for identifying track faults from car body vibra-
tion. It is shown that the feature of track fault can be identified in time-frequency
plane.

Tsunashima proposed a classifier based on a machine learning technique for iden-
tifying track faults automatically from measured car body vibration [5]. It is shown
that the degradation of track can be classified in the feature space consisting of car
body vibration RMS.

Faghih-Roohi et al. proposed a deep convolutional neural network for the analysis
of image data for the detection of rail surface defects [11]. They explored the effi-
ciency of the proposed deep convolutional neural network for the detection and
classification of rail surface defects.

Zheng et al. proposed a multi-object detection method based on a deep
convolutional neural network that can achieve non-destructive detection of rail sur-
face and fastener defects [12]. A defect detection model based on Mask R-CNN and
ResNet framework was utilized to detect the surface defects.

Jin et al. proposed a machine learning framework based on wavelet scattering
networks and neural networks for identifying railhead defects [13].

Alvarenga et al. proposed an embedded system for online detection and location of
rails defects based on eddy current [14]. They proposed a new method to interpret
eddy current signals by analyzing their wavelet transforms through a convolutional
neural network.

3. Effect of track faults on time-frequency plane

3.1 Overview of the simulation

When a train runs on a track, vibrations that correspond to the track geometry are
generated [15, 16]. Therefore, in this study, to verify the relationship between the type
of track fault and the car body vibration acceleration, and to evaluate the effectiveness
of time-frequency analysis in detecting track faults, we simulated the occurrence of
track faults, calculated the vertical vibration acceleration of the car body, and then
applied a CWT, a method of time-frequency analysis, to the results.

3.2 Continuous wavelet transform (CWT)

A CWT is a method that simultaneously detects the frequency and time charac-
teristics of an unsteady signal, by comparing the original signal with dilated and
translated versions of a small wavelike function called the mother wavelet. Using this
method, it is possible to view the amplitude and frequency information of the vibra-
tion acceleration as an image. In this study, we used theMorlet wavelet, which offers a
relatively good balance between localization of time and frequency, as the mother
wavelet [17] (see Appendix A).

This technique is well suited for analyzing unsteady signals, such as x tð Þ those that
exhibit sudden variation, and is defined as follows:
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Wψ a, bð Þ ¼
ð

∞

�∞

1
ffiffiffi

a
p ψ

∗
t� b

a

� �

x tð Þdt, (1)

where, variables a and b correspond to the dilatation and location parameters,
respectively, they translate the mother wavelet ψ tð Þ by a time shift b in time, and by
1=a in frequency. indicates the complex conjugate of ψ .

3.3 Vehicle model used in the simulation

The vehicle model used in the simulation is shown in Figure 2 [10]. The vehicle
model consists of a total of seven rigid bodies: one car body, two bogies, and four
wheelsets. The car body and bogie were assigned two degrees of freedom (DOF) for
bounce and pitch, and the wheelset was assigned one DOF for the bounce. The
vehicle’s parameters were obtained from measurement data from a regional railway
vehicle equipped with an onboard sensing device.

3.4 Simulation conditions

In the simulation, the vehicle model was run at 60 [km/h] for 500 [m], and the
results were output for the section between 100 [m] and 350 [m]. We set rail joint
faults (joint depressions) at 4 points; otherwise, the track was assumed to be straight.
To set the rail joint faults, we used the function model shown in Figure 3 [18].

The geometry of the modeled track are represented by

y ¼ Ae�
1
2ð Þ x

kð Þ2 , (2)

and

y2 ¼
1

2

x

k

� �2
� A: (3)

Figure 2.
Vehicle model [10].
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The track geometry used in the simulation is shown in Figure 4. At the 150 [m]
and 200 [m] points, we set depths of A ¼ 15 mm½ � and 30 mm½ �, respectively, to
simulate joint depressions, which are depressions in the top surface of the railhead
that occur at track joints.

In both cases, we set the depression length k ¼ 83:5 mm½ �. For comparison, at the
250 [m] and 300 [m] points, we set a gentler dip in track geometry by setting depths
of A ¼ 15 mm½ � and 30 mm½ �, respectively, but with length k ¼ 1670 mm½ �. The
values of A and k were determined with reference to generally occurring track
displacement. The car body vibration acceleration was assumed to occur directly
above the center of the front bogie of the vehicle model. The simulation was
performed at a sampling frequency of 200 [Hz].

3.5 Simulation results

The simulated vertical vibration acceleration of the car body is shown in Figure 5a.
The figure shows that characteristic vibrations corresponding to the track geometry
are generated at the points where the track faults were set. Figure 5b shows the result
of the CWT of the simulated vertical vibration acceleration. The color bar indicates
the magnitude of the amplitude in the time-frequency plane.

At 150 [m] and 200 [m], the points where the joint depressions were simulated,
vibrations in the frequency band of 15–30 [Hz] were detected due to the impulse-like
track geometry, and variations depending on depth A can be seen in the CWT images.
In addition, at 250 [m] and 300 [m], the points where gentler dips in the track
geometry were set, vibrations in the frequency band of 0–5 [Hz] were detected, and
variations depending on depth A can be seen in the CWT images. These results

Figure 3.

Track fault model.

Figure 4.
Track geometry with different faults.
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demonstrate that the CWT images are effective for identifying track faults, since the
features of the CWT images change markedly depending on the type and level of
degradation.

4. Monitoring the condition of railway track using a convolutional neural
network

4.1 Track condition monitoring system

Figure 6 shows the track condition monitoring system developed and applied for
regional railway lines in Japan [2].

Accelerometers and rate gyros in the onboard sensing device measure the car body
vibration. A GNSS receiver detects the location and speed of the train. Collected data
are transmitted to the data server in the monitoring center continuously via a mobile
phone network.

The diagnostic software analyses the collected data and results are fed back to the
railway operators through online channels via tablet computers. The diagnostic results
are used to facilitate the maintenance work of railway operators.

Convolutional neural networks are a method used in the field of machine learning
called deep learning and are particularly suitable for image recognition. In this study,

Figure 5.
Simulated car body vertical acceleration and its CWT image.
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we examined the effectiveness of classifying longitudinal level irregularities and joint
depressions automatically, using a diagnostic algorithm, we constructed based on a
convolutional neural network trained on CWT images generated from vertical vibra-
tion acceleration data from a car body. The diagnostic procedure is shown in Figure 7.

Figure 6.
Track condition monitoring system [2].

Figure 7.
Diagnostic procedure.
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5. Identification of the condition of railway track using vertical vibration
acceleration data measured from an actual car body

5.1 Overview of diagnosis

The car body’s vertical acceleration with track faults was collected in a regional
railway line using the track condition monitoring system. The input data for the
classifier consists of vertical vibration acceleration measurements from an
onboard sensing device in a car body, which are then converted into images
using a CWT. Figure 8 shows an example of converting the measurements into a
CWT image.

The vibration characteristics of the joint depression at the distance of 25.82 [km]
appear in the 10–30 [Hz] frequency range. The vibration characteristics of the
longitudinal level irregularities around 25.95 [km] appear in the 0–5 [Hz] frequency
range.

5.2 Images used for training and evaluation

In this study, we investigated the following three types of diagnoses:

• Classification of images into three types: longitudinal level irregularity, joint
depression, and normal.

Figure 8.
Measured car-body vertical acceleration and its CWT image.

8

Recent Advances of Wavelet Transform and Their Applications



• Classification of the degradation level of longitudinal level irregularity into
normal, medium, and large.

• Classification of the degradation level of joint depression into normal, medium,
and large.

Examples of images used for each task are shown in Figures 9–11. The images were
created with an aspect ratio of 1:1 (150 � 150 pixels), which is optimal for training.

For diagnosing the level of degradation of longitudinal level irregularities, in cases
where the one-side amplitude of the vibration acceleration was normal, images of car
body acceleration of 0–0:5 m=s2½ � were used. To diagnose medium degradation,
images of 0:8–1:2 m=s2½ � were used, and to diagnose large degradation, images of
1:5 m=s2½ � or greater were used.

For diagnosing the level of degradation of joint depressions, in cases where the
one-side amplitude of the vibration acceleration was normal, images of body

Figure 9.
CWT images of faulty track.
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acceleration of 0 to were used. To diagnose medium degradation, images of
2:5–3:5 m=s2½ � were used, and to diagnose large degradation, images of 4:5 m=s2½ � or
greater were used.

5.3 Identification of longitudinal level irregularities and joint depressions

5.3.1 Configuration of the trained convolutional neural network

We prepared a total of 300 images: 100 normal images, 100 images
with a longitudinal level irregularity, and 100 images with a joint depression.
We set aside 80% of the images for training and 20% for evaluation as shown in
Figure 9.

Figure 12 shows the configuration of the trained convolutional neural network
(see Appendix B). In the figure, the name of the process and the size (vertical �
horizontal � channels) before processing are indicated above each layer, and the size
after processing is indicated below the layer.

The Convolution layer applies the convolution operation to the image,
representing it in matrix form; the Max pooling layer performs information
compression; the Affine layer combines information from different layers,
and the Output layer outputs a set of probabilities indicating how well the image
matches the three types of training image data. The number of training sessions was
set to 50.

Figure 11.
CWT images of the different levels of a degraded track (joint depression).

Figure 10.
CWT images of the different levels of a degraded track (track irregularity).
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5.3.2 Diagnosis results

Figure 13 shows the results of using images for evaluation to discriminate longitu-
dinal level irregularity track faults versus joint depression track faults versus normal
track. The overall accuracy rate was 98.3%, demonstrating that convolutional neural
networks are effective for the classification of track faults.

5.4 Identification of the degradation level of longitudinal level irregularities

5.4.1 Configuration of the trained convolutional neural network

In order to classify the degradation level of longitudinal level irregularities into
three types: normal, medium, and large, we prepared a total of 300 images: 100
normal, 100 medium, and 100 large. We set aside 80% of the images for training and

Figure 13.
Detection accuracy for the type of track fault.

Figure 12.
Network configuration.
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20% for evaluation. The network configuration and the number of training sessions
were the same as in Section 5.3.

5.4.2 Diagnosis results

Detection results using the trained model are shown in Figure 14. The overall
accuracy rate was 98.3%, demonstrating that the level of longitudinal level irregularity
can be classified with high accuracy into normal, medium, and large.

5.5 Classification of the degradation level of joint depression

5.5.1 Configuration of the trained convolutional neural network

In order to classify the degradation level of joint depression into three types:
normal, medium, and large, we prepared a total of 300 images: 100 normal, 100
medium, and 100 large. We set aside 80% of the images for training and 20% for
evaluation. The network configuration and the number of training sessions were the
same as in Section 5.3.

Figure 14.
Detection accuracy for the different levels of a degraded track (track irregularity).

Figure 15.
Detection accuracy for the different levels of a degraded track (joint depression).
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5.5.2 Diagnosis results

Detection results using the trained model are shown in Figure 15. Some incorrect
diagnoses were made in the images of normal and medium joint depression. However,
the overall accuracy was 96.7%, which was sufficient to classify the level of joint
depression, demonstrating that the diagnostic algorithm we developed is effective for
the diagnosis of joint depression.

6. Investigation of CWT images that were diagnosed incorrectly

Figure 16 shows an example of an image that was diagnosed incorrectly. The right
side of Figure 16a was diagnosed as normal, even though it shows joint depression.

Figure 16.
CWT images that were diagnosed incorrectly.
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Conversely, the left side of Figure 16a shows an image that was diagnosed correctly as
a joint depression. Comparing those, the feature representing the joint depression is
extremely small in the incorrectly diagnosed image. This reveals that an incorrect
diagnosis can occur when the features are extremely small.

The right side of Figure 16bwas diagnosed as normal, even though it shows a large
track irregularity. Conversely, the left side of Figure 16b shows an image that was
diagnosed correctly as a large track irregularity. The reason for the incorrect diagnosis
was that the large amplitude of the vertical acceleration, shown in red color, was
appeared at the bottom of the CWT image.

7. Conclusion

In this study, we proposed a method to classify the type and level of track faults
automatically using a convolutional neural network trained on car body vibration
acceleration measurements converted into images using a CWT, a well-known
method of time-frequency analysis. The algorithm we developed was used to perform
the diagnosis of track conditions on actual measurements.

The results demonstrated that it is possible to diagnose the type and level of
degradation of track faults with high accuracy.

In future work, we plan to improve the algorithm to estimate the locations of track
faults accurately in actual measurements and monitor the condition of railway tracks
in more detail.

Acknowledgements

This research was funded by Nihon University Research Grant for Social Imple-
mentation (19-006) (2019). We would like to thank Editage (www.editage.jp) for
English language editing.

Conflict of interest

The authors declare no conflict of interest.

Abbreviations

CWT continuous wavelet transform
RMS root mean square
CNN convolutional neural network
HHT Hilbert–Huang transform
GNSS global navigation satellite system

A. Appendix

A CWT is a method that simultaneously detects the frequency and time charac-
teristics of an unsteady signal, by comparing the original signal with dilated and

14

Recent Advances of Wavelet Transform and Their Applications



translated versions of a small wavelike function called the mother wavelet. The CWT
computes the inner products of a continuous signal with a set of continuous wavelets
according to the following equation

Wψ a, bð Þ ¼
ð

∞

�∞

1
ffiffiffi

a
p ψ

∗
t� b

a

� �

x tð Þdt, (A1)

where, variables a and b correspond to the dilatation and location parameters,
respectively, they translate the mother wavelet ψ tð Þ by a time shift b in time, and by
1=a in frequency. ψ ∗ indicates the complex conjugate of ψ .

In this study, we used the real-valued Morlet wavelet (Figure 17) as the mother
wavelet ψ tð Þ.

ψ tð Þ ¼ e�
t2

2 cos 5tð Þ: (A2)

B. Appendix

A Convolutional Neural Network (CNN) is a well-known deep learning architec-
ture. There are numerous variants of CNN architectures. The basic components of
CNN consist of convolutional layer, pooling layer, and fully-connected layers [19].

B.1 Convolution Layer

The objective of the convolution operation is to extract the significant features
from the input image. The convolution layer is composed of several convolution
kernels which are used to compute different feature maps. The feature maps are

Figure 17.
Real-valued Morlet wavelet.
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generated by the convolution operation with the filter that acts as the feature extractor
as follows.

I2 x, yð Þ ¼
X

N

j¼�N

X

N

i¼�N

F i, jð ÞI1 x� i, y� jð Þ: (A3)

where I1 x, yð Þ: pixel value of input image at x, yð Þ, I2 x, yð Þ: pixel value of output
image at x, yð Þ, F i, jð Þ: filter coefficient.

B.2 Pooling layer

The Pooling layer is responsible for reducing the spatial size of the feature maps.
This is to decrease the computational power required to process the data through size
reduction. It is useful for extracting dominant features. There are two types of
Pooling: Max Pooling and Average Pooling. Max Pooling returns the maximum value
from the portion of the image. On the other hand, Average Pooling returns the
average value. In this study, Max Pooling were used. Figure 18 shows the example of
the Max Pooling operation.

B.3 Activation function

Rectified linear unit (ReLU) is one of the most famous activation functions. In this
study, the following function is used to adjust the output of the Pooling Layer.

y ¼
0 x≤0ð Þ
x x>0ð Þ

�

(B1)

where x is the input of the activation function. The simple operation of the
activation function makes the faster computation than sigmoid or hyperbolic tangent
functions.

Softmax function defined by

yi ¼
exi

Pn
k¼1e

xk
i ¼ 1, 2,⋯, nð Þ, (B2)

was used in output layer. Where n indicates the number of classification.

Figure 18.
Max pooling.
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B.4 Fully connected layer

In fully connected layers, the neuron applies a linear transformation to the input
vector through a weights matrix. In this study, an Affine transformation was used in
fully connected layer.

B.5 Loss function

The loss function is the function that computes the distance between the current
output of the algorithm and the expected output. In this study, we employed the
categorical cross-entropy, which is well suited to classification tasks.

Author details

Hitoshi Tsunashima*† and Masashi Takikawa†

College of Industrial Technology, Nihon University, Chiba, Japan

*Address all correspondence to: tsunashima.hitoshi@nihon-u.ac.jp

†These authors contributed equally.

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

17

Monitoring the Condition of Railway Tracks Using a Convolutional Neural Network
DOI: http://dx.doi.org/10.5772/intechopen.102672



References

[1]Weston P, Roberts C, Yeo G,
Stewar E. Perspectives on railway track
geometry condition monitoring from in-
service railway vehicles. Vehicle System
Dynamics. 2015;53(7):1063-1091. DOI:
10.1080/00423114.2015.1034730

[2] Tsunashima H, Mori H, Ogino M,
Asano A. Development of track
condition monitoring system using
onboard sensing device. In: Zboinski K.
editors. Railway Research. London:
IntechOpen; 2015. p. 145. DOI: 10.5772/
61077

[3]Mori H, Ohno H, Tsunashima H,
Saito Y. Development of compact size
onboard device for condition monitoring
of railway tracks. Journal of Mechanical
Systems for Transportation and
Logistics. 2013;6(2):142-149. DOI:
10.1299/jmtl.6.142

[4] Vinberg EM, Martin M, Firdaus AH,
Tang Y, Qazizadeh A. Railway
Applications of Condition Monitoring.
Stockholm, Sweden: KTH Royal Institute
of Technology; 2018. p. 147. DOI:
10.13140/RG.2.2.35912.62729

[5] Tsunashima H. Condition monitoring
of railway tracks from car-body
vibration using a machine learning
technique. Applied Sciences. 2019;9(13):
2734. DOI: 10.3390/app9132734

[6]Daubechies I. Ten Lectures on
Wavelets. Society for Industrial and
Applied Mathematics: Philadelphia,
Pennsylvania, United States. 1992. p. 441
DOI: 10.1137/1.9781611970104

[7]Weston P, Ling C, Goodman C,
Roberts C, Li P, Goodall R. Monitoring
vertical track irregularity from in-service
railway vehicles. Proceedings of the
Institution of Mechanical Engineers, Part
F: Journal of Rail and Rapid Transit.

2007;221:75-88. DOI: 10.1243/
0954409JRRT65

[8]Weston P, Ling C, Goodman C,
Roberts C, Li P, Goodall R.Monitoring
lateral track irregularity from in-service
railway vehicles. Proceedings of the
Institution ofMechanical Engineers, Part F:
Journal of Rail andRapidTransit. 2007;221:
89-100. DOI: 10.1243/0954409JRRT64

[9]Wei X, Liu F, Jia L. Urban rail track
condition monitoring based on in-service
vehicle acceleration measurements.
Measurement. 2016;80:217-228. DOI:
10.1016/j.measurement.2015.11.033

[10] Tsunashima H, Hirose R. Condition
monitoring of railway track from car-
body vibration using time–frequency
analysis. Vehicle System Dynamics.
2020;1:1-18. DOI: 10.1080/
00423114.2020.1850808

[11] Faghih-Roohi S, Hajizadeh S,NunezA,
Babuska R, De Schutter B. Deep
convolutional neural networks for
detection of rail surface defects. In:
Proceedings of the 2016 International Joint
Conference onNeural Networks.
Vancouver, Canada: IJCNN; 2016.
pp. 2584-2589

[12] Zheng D, Li L, Zheng S, Chai X,
Zhao S, Tong Q, et al. A defect detection
method for rail surface and fasteners
based on deep convolutional neural
network. Hindawi, Computational
Intelligence and Neuroscience. 2021;
2565500:15. DOI: 10.1155/2021/2565500

[13] Jin Y. Wavelet scattering and neural
networks for railhead defect
identification. Materials. 1957;2021:14.
DOI: 10.3390/ma14081957

[14] Alvarenga TA, Carvalho AL,
Honorio LM, Cerqueira AS, Filho LMA,

18

Recent Advances of Wavelet Transform and Their Applications



Nobrega RA. Detection and classification
system for rail surface defects based on
Eddy current. Sensors. 2021;21:7937.
DOI: 10.3390/s21237937

[15] Kraft S, Causse J, Coudert F.
Vehicle response based track geometry
assessment using multi-body simulation.
Vehicle System Dynamics. 2018;56(2):
190-220. DOI: 10.1080/00423114.
2017.1359418

[16] Karis T, Berg M, Stichel S, Li M,
Thomas D, Dirks B. Correlation of track
irregularities and vehicle responses
based on measured data. Vehicle System
Dynamics. 2018;56(6):967-981. DOI:
10.1080/00423114.2017.1403634

[17] Le T. Use of the Morlet mother
wavelet in the frequency-scale domain
decomposition technique for the modal
identification of ambient vibration
responses. Mechanical Systems and
Signal Processing. 2017;95:488-505. DOI:
10.1016/j.ymssp.2017.03.045

[18]Garg V, Dukkipati R. Dynamics of
Railway Vehicle Systems. Cambridge,
Massachusetts: Academic Press; 1984.
p. 407

[19]Gu J, Wang Z, Kuen J, Ma L,
Shahroudy A, Shuai B, et al. Recent
advances in convolutional neural
networks. Pattern Recognition. 2018;77:
354-377. DOI: 10.1016/j.
patcog.2017.10.013

19

Monitoring the Condition of Railway Tracks Using a Convolutional Neural Network
DOI: http://dx.doi.org/10.5772/intechopen.102672


