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Chapter

Track Condition Monitoring Based
on In-Service Train Vibration Data
Using Smartphones

Hitoshi Tsunashima, Ryu Honda and Akira Matsumoto

Abstract

Although track maintenance is important, many operators of regional railway with
limited financial resources are unable to conduct sufficient track inspections. In
response to this problem, a track condition diagnosis system using car-body vibration
sensors has been developed. In this study, a track condition monitoring system using a
smartphone for general use has been developed. A technique for identifying train
location using global navigation satellite system (GNSS) speed is proposed. The results
of field testing shows that track condition diagnosis is possible using a smartphone-
based monitoring system.

Keywords: railway, track, condition monitoring, wavelet transform, Hilbert-Huang
transform, smartphone

1. Introduction

Railway track management helps support and guide wheels and is very important
in terms of comfort and safety. Track management is usually carried out by track
maintenance workers and usually uses track geometry cars. However, these methods
are labor-intensive and costly, and many operators cannot carry out sufficient track
inspections of regional railways due to limited financial resources. To address this
problem, a track diagnosis system using an exclusive onboard sensing device has been
developed [1-5].

Currently, track maintenance and management on railways is based on measured
data of track displacement. However, track displacement measurement requires
expensive equipment such as track inspection vehicles and measuring devices. A more
economical management method is required, especially for regional railways. Other
methods of track management exist in addition to displacement measurement, e.g.,
train vibration inspection using vehicle vibration measurement, but none of them
constitutes a fundamental inspection method such as track displacement inspection
owing to the low reproducibility of measurement data.

Meanwhile, recent advances in the practical use of IoT devices such as
smartphones incorporating accelerometers based on microelectro mechanical systems
(MEMS) have been reported. These devices can be used as simple and inexpensive

1 IntechOpen



New Research on Railway Engineering and Transport

vehicle vibration measurement devices. Many studies on track monitoring systems
using vehicle vibration measurement with such IoT devices were conducted.

In this study, a track condition monitoring system for use on a smartphone was
developed to reduce the cost of such a system. Using two types of IoT devices for
business use and a commercially available smartphone, we took measurements of an
actual car, compared the performance of both IoT devices, and diagnosed the condi-
tion of the track.

2. Literature review on track condition monitoring based on in-serve train
vibration

2.1 Track condition monitoring from an in-service vehicle

Track maintenance and management on the railway is based on measured data of
track displacement. However, track displacement measurement requires expensive
equipment such as track inspection vehicles and measuring devices. A more econom-
ical management method is required, especially for regional railways.

Other methods of track management exist in addition to displacement measure-
ment, e.g., train vibration inspection using in-service vehicle vibration measurement
[6, 7]. Many studies on track monitoring systems using in-service vehicle vibration
measurement with on-board sensing devices were conducted both in Japan and
abroad.

2.2 Axle-box-mounted sensors

Chen et al., Karis et al., and Tsai et al. analyzed the relation between axle-box
accelerations and railway defects or irregularities [8-10].

Sun et al. proposed an on-board detection technique for longitudinal track irregu-
larity that can be applied to commercial high-speed trains. The acceleration of the
axle-box of the high-speed train was evaluated [11].

Chudzikiewicz et al. demonstrated the possibilities of estimating the track condi-
tion using axle-boxes and car-bodies motions described by acceleration signals. They
presented the preliminary investigation on the test track and supervised runs on
Polish Railway Lines of an Electric Multiple Unit (EMU-ED74), [12].

2.3 Bogie-mounted sensors

Some types of track faults were detected by measuring the acceleration of bogies.
Weston et al. demonstrated track irregularity monitoring by using bogie-mounted
sensors [13, 14].

Malekjafarian et al. investigated the use of drive-by train measurements for rail-
way track monitoring on the Dublin-Belfast line with an in-service Irish Rail train. The
measurements were taken with accelerometers and a global positioning system. They
used the train bogie accelerations [15].

2.4 Car-body-mounted sensors

Tsunashima et al. developed a system to identify track faults by using accelerom-
eters and GNSS placed on the car-body of in-service vehicles [1-5].
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Bai et al. used low-cost accelerometers that were placed on or attached to the floors
of operating trains for analyzing track quality [16].

A track condition monitoring based on the bogie and car-body acceleration mea-
surements was presented and verified in Shang Hai metro Line 1 [17].

Balouchi presented a cab-based track monitoring system developed in the UK.
They presented through comparison of vibration response from sites with known
defects and outputs from Network Rail’s New Measurement Train (NMT). Good
agreement was reported for track faults in relation to vertical and lateral alignment
and dip faults [18].

2.5 Signal processing

To extract a signal on faulty tracks from measured vehicle vibration, several
techniques using nonmodel-based and model-based method were proposed.

Tsunashima et al. proposed a nonmodel-based technique using time-frequency
analysis [4]. In this paper, detection performance using continuous wavelet
transform (CWT) and Hilbert-Huang transform (HHT) were compared for identify-
ing track faults from car-body vibration. They showed that track fault features can be
identified in the time-frequency plane based on the analysis of simulation studies and
field tests.

A Kalman filter-based method to estimate the track geometry of Shinkansen tracks
from car-body motions was proposed [19]. The proposed Kalman filter-based estima-
tion technique was modified and applied for conventional railways [20].

Tsunashima proposed a classifier based on machine learning techniques for iden-
tifying track faults automatically from measured car-body vibration [3]. It is shown
that the degradation of track can be classified in the feature space consists of car-body
vibration RMS.

A new method for automatically classifying the type and degradation level of track
faults using a convolutional neural network (CNN) by imaging car-body acceleration
on a time-frequency plane by continuous wavelet transform [5].

2.6 Smartphones-based system

Chellaswamy et al. proposed a method for monitoring the irregularities in railway
tracks by updating the status of the tracks in the cloud. The IoT based Railway Track
Monitoring System (IoT-RMS) is proposed for monitoring the health of the railway
track [21].

Rodriguez et al. presents the use of mobile applications to assess the quality and
comfort of a railway section track (narrow gauge) in northern Spain [22].

Cong et al. proposed an approach for using the smartphone as a sensing platform to
obtain real-time data on vehicle acceleration, velocity, and location for monitoring the
track condition during subway rail transit in China [23].

Paix3o et al. presented an approach to use smartphones to perform constant accel-
eration measurements inside in-service trains to complement the assessment of the
structural performance and geometrical degradation of the tracks. To demonstrate the
applicability of smartphone’s sensing capabilities for on-board railway track monitor-
ing, they evaluated the accelerations inside the car-body of the Portuguese Alfa Pen-
dular passenger train [24].
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3. Constructing the track diagnosis system
3.1 Track irregularities and track faults

Major private railway companies and Japan Railways (JR) use track inspection
vehicles to measure track displacement, and track management is based on such
measurements. Track irregularities such as longitudinal level, alignment, gauge, cross
level, and twist (depicted in Figure 1) should be controlled properly.

However, it is difficult for regional railway companies to introduce track inspec-
tion vehicles because of the cost. Moreover, manual inspection by track maintenance
staff is inefficient and expensive.

3.2 Overview of track management with proposed system

Figure 2 depicts the track management method used in this study. A 3-axis accel-
erometer mounted on a smartphone was used to measure the vibration of the car-
body, a 3-axis Gyro sensor was used to measure the angular acceleration, and a GNSS
sensor was used to collect information about the position and traveling speed; all data
are then transmitted to the server. By analyzing the transmitted data, the condition of
the track can be diagnosed, and, based on the result, railway operators can prioritize
track maintenance and work.

3.3 Measurement devices

A BL-02 IoT device for business use (hereafter referred to as Device B) and a
commercial smartphone Galaxy S7-edge (hereafter referred to as Device G) were used
for measurements. Figure 3 shows a photograph of these devices, and Table 1 details
their specifications.

Both devices were equipped with a 3-axis accelerometer, a 3-axis Gyro sensor, a
GNSS sensor that can determine the location and traveling speed, and 4G internet,
which is required for data transmission and reception.

Rail
Sleeper

Ballast

(a) Track structure

Cross level Gauge

E RN E R

|

Twist

(b) Track fault (joint depression) (c) Track irregularities

Figure 1.
Track structure and irregularities ([5]).
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Figure 2.

Track condition management using car-body vibration.

2.8inchLCD

Depth150. 9mm

Height7. 7mm

(a) BL-02 IoT device (b) GalaxyS7-edge smartphone

Figure 3.
Appearance of the BL-02 IoT device for business use and the GalaxySy-edge smartphone for general use.

IoT Devices Device B: BL-02 Device G: GalaxyS7-edge

CPU Cortex-A7 Snapdragon820

(6N Android6.0 Andorid6.0

Display 2.8inch 5.5inch

Sensor 3-axis accelerometer, 3-axis 3-axis accelerometer, 3-axis
Gyro sensor, GNSS sensor Gyro sensor, GNSS sensor

Sampling frequency 232 Hz 417 Hz

Size 94 x 58 x 16 mm 151 x 73 x 8.3 mm

Weight 102 grams 158 grams

Table 1.

Specifications of the device B and the device G.
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Figure 4.
Location of measurement devices.

At the time of measurement, data from Device B were measured at 232 Hz and data
from Device G were measured at 417 Hz; both were down-sampled to 80 Hz at the time
of acquisition from the server to reduce the amount of processing required for analysis.

Using these devices, we can measure and diagnose the vibration of the car-body.
Considering convenience and GNSS reception environment, we installed the
smartphone near the driver’s cab, as shown in Figure 4.

3.4 Identifying the areas of interest from the vibration measurements

Smartphones are able to acquire latitude and longitude information; however, loca-
tion detection errors increase when methods such as map matching are not employed.
Therefore, we adopted a method to calculate the milage using the GNSS speed, which
was, in turn, calculated using the Doppler effect of the GNSS carrier wave.

4. Verification of measurement data
4.1 Verification of vibration and angular velocity data

Figure 5 shows the measurements from Devices B and G installed on an actual car on
Regional Railway A (line length: 30.5 km, Stations:17, Max. speed: 85 km/h) in December
2021. The data from both devices are almost identical in phase and amplitude.

Figure 6 shows the power spectral density (PSD) of the vertical acceleration of the
vehicle. The frequency characteristics of both devices were consistent, and we can
conclude that they yield sufficient accuracy as onboard sensing devices.

4.2 Identification of train location
4.2.1 Comparison of GNSS speeds
Identifying the location of a train is important for track management. In this

system, the location of a train, D, is identified by integrating measured GNSS speed
using a following equation.where vgnss(t) is the measured GNSS speed.
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Measured car-body vibration with Device B and Device G.

D= JUGNSS(t)dta (1)

The measured GNSS speed was shown in Figure 7. It should be noted that the
measured GNSS speed was affected by multipath errors. Multipath is a major error
source for GNSS receivers [25].

The location of a train can be estimated as shown in Figure 8 using the measured
raw GNSS speed. The location data are affected by the number of satellite navigation
systems supported by the device. Device B supports few satellite positioning systems
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Figure 6.
Power spectral density (PSD) of measuved car-body vertical acceleration by Device B and Device G.
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Figure 7.
Measured GNSS speed.

and is not compatible with A-GPS; therefore, the number of satellites it receives
information from differs to that of Device G, and it is considered to be more
susceptible to multipath errors.

We used a correction process that used a median filter for the GNSS speeds
affected by multipath errors. By performing median filter processing with a window
size of 800 data for approximately 5 seconds, and taking into account the magnitude
of the effect of the multipath errors, we were able to improve the rapid decrease in
speed due to multipath errors of the GNSS speeds measured by Device B, as shown in
Figure 9.

8



Track Condition Monitoring Based on In-Service Train Vibration Data Using Smartphones
DOI: http://dx.doi.ovg/10.5772/intechopen.111703

2.0
1.5
1.0
0.5 1
0.0+
—0.51
71‘0 x
—1.54
—2.0

—— Device B
—— Device G

Vertical acc. [m/s?)

460 480 500 520 540
Distance [m]

Figure 8.
Measured car-body vertical accelevation and vehicle location without GNSS speed filtering.
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Figure 9.
Median filtered GNSS speed.

In addition, to evaluate the effect of the median filter processing on the accuracy of
the location identification, we investigated the relationship between the vehicle loca-
tion obtained by integrating the GNSS speeds and that obtained using the car-body
vertical acceleration, as shown in Figure 10.

2.0
15
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0.5
0.0
—0.5
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—— Device B
— Device G

Vertical acc. [m/s?]

460 480 500 520 540
Distance [m]

Figure 10.
Measured car-body vertical accelevation and vehicle location with GNSS speed filtering.
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This figure shows that the position error is greatly improved between 450 and
550 m, which is a section that is particularly affected by multipath errors.

5. Track condition diagnosis using time-frequency analysis
5.1 Effect of track faults on time-frequency plane
5.1.1 Continuous wavelet transform (CWT)
The wavelet transform is well-known technique for analyzing nonstationary sig-
nals [26, 27]. A CWT gives simultaneous detection of the frequency and time charac-

teristics for a nonstationary signals using a wavelet y, which is a function of zero
average:

r w(t)dt = 0. (2)

The CWT is calculated using the mother wavelet y (¢) as

Wy = [ T (s 3)
where a and b correspond to the dilatation and location parameters, respectively.
Eq. (3) translates a source signal x(¢) using the mother wavelet transformed by a

time shift b in time, and by 1/a in frequency. y * indicates the complex conjugate of .
In this study, the Morlet wavelet, which has a good performance between localiza-

tion of time and frequency, was used [5, 28].

The CWT is subject to the uncertainty principle on time-frequency domain. In case
of fault detection using CWT, if we are focusing on frequency related on the fault, the
time when the fault occurred will be vague. If we are focusing on the time when the
fault occurred, the frequency will be spread widely on the time-frequency plane.

5.1.2 Hilbert-Huang transform (HHT)

The Hilbert-Huang transform (HHT) has been proposed for analyzing nonlinear
and nonstationary data by Huang et al. [29]. This method is not subject to the uncer-
tainty principle on time-frequency domain mentioned above. Thus, more localized
fault detection is possible.

The HHT consists of two operations. The first operation is the empirical mode
decomposition (EMD) and the second operation is Hilbert transform.

The EMD operation breaks time domain data into intrinsic oscillatory modes called
intrinsic mode functions (IMFs). The second operation is the Hilbert transform.
Instantaneous amplitude, instantaneous phase, and instantaneous frequency of the
IMFs are obtained by the Hilbert transform.

An IMF must satisfy the following requirements: (1) the number of local extrema
and the number of zero crossings must either equal or differ by at most one. (2) the
mean value of the envelopes of local maxima and local minima is zero at any point.
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For extracting IMFs from the original signal, the iterative sifting process is applied.
Once the first IMF is calculated, it is subtracted from the original signal to obtain a
residual value. The EMD operation is applied again to the residual. This process
repeats until the residual no longer contains any oscillation modes.

The original signal, s(t), can be expressed by EMD operation as:

0= xlt) + R), @

=1

where x;(¢) is the ith IMF and R(¢) is a residual.
Followed by the EMD operation, the analytical signal 2;(t) is constructed on each
IMFs component by:

zi(t) = xi(t) +jy;(0) = ai(0)e*Y), (5)

where y;(t) is a Hilbert transform of x;() calculated by:

y6) =PV r X g, (6)

el — T

where PV shows Cauchy principal value.
Instantaneous amplitude, @;(t), and instantaneous frequency, w;(t), can be
obtained from the analytical signal z;(t) as:

a;(t) = \/xi(t)* +y,(t)°, (7)

on(t) = 200, (8)

where
0;(t) = tan ! (iﬁ) 9)

This data-driven method is highly adaptive. However, intrinsic mode functions
(IMFs) obtained by EMD strongly depend on the data itself. Thus, a small change in
the data will appear on different decomposition level.

5.2 Track condition diagnosis for regional railway lines
5.2.1 Regional railway A

Time-frequency analysis was performed on the measured data to identify and
evaluate the detailed location and type of track fault. When a train runs on a track
where a fault exists, characteristic vibration corresponding to the type of track
fault occurs. Therefore, one could identify the type of track fault and location of its
occurrence by analyzing the time-frequency plane of measured car-body vertical
acceleration.
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Figure 11.

Time-frequency analysis of date measuved in December 23, 2021 in railway A.

Figure 11 shows the time-frequency analyses, CWT and HHT of data measured in
December 23, 2021 in Railway A (line length: 30.5 km, Stations:17, Max. speed: 85 km/
h). The data used for this analysis are data measured using Device G.

It can be seen from Figure 11 that a high-frequency vibration appeared at
27000 m, which was caused by the joint depression [4]. Whereas a large vibration can
be seen in low frequency in a 27,015-27,025 m section. This is caused by longitudinal-
level track irregularities.

5.2.2 Regional railway B

Figures 12 and 13 show the time-frequency analyses, CWT and HHT of data
measured in June and October 2022, respectively. In June 2022, vibrations due to
longitudinal-level irregularity were detected at 1-2 Hz between 600 and 700 m but
were no longer detected in October 2022 due to track irregularity correction. The data
used for this analysis are data measured using Device G on Regional Railway B (line
length: 6.4 km, Stations: 8, Max. speed: 40 km/h) in June 2022 and October 2022.

Figure 14 displays a photograph of the track section between 600 and 700 m in
October 2022; the ballast was newly replenished, line maintenance work was carried
out, and the longitudinal-level irregularity was eliminated. Thus, by performing time-
frequency analysis using data measured by a smartphone, the type and location of
track fault can be identified, and the effects of track irregularity correction can be
confirmed.
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Time-frequency analysis of date measuved in June 2022 in vailway B.
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Time-frequency analysis of date measured in October 2022 in railway B.
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6

Figure 14.
Section where track maintenance work done.

6. Conclusion

In this study, we measured the car-body vibration of an in-service train using a
smartphone and verified whether the track condition could be diagnosed. We were
able to monitor and diagnose the track condition using both the IoT device for
business use and the commercially available smartphone.

The accuracy of the GNSS speed, which is necessary to identify the location of
the train, was reduced by the number of satellites received by the smartphone, that
is, by the number of compatible satellite positioning systems. Therefore, when
selecting a smartphone, the number of supported satellite positioning systems must
be considered. In addition, we determined that the performance of devices
susceptible to multipath errors can be improved by performing median filtering on
the GNSS speed.

Time-frequency analysis of measured car-body acceleration obtained by a
smartphone shows that proper diagnosis of track condition is possible using
smartphone-based track condition monitoring system.

In the future, we plan to acquire data on a continuous basis and conduct track
condition diagnosis.
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