97 research outputs found

    Mouse subcutaneous tissue reaction to calcium hydroxide-based.

    Get PDF
    Mouse subcutaneous tissue reaction to an embedded calcium hydroxide-based root canal filling material was analyzed histopathologically. After the material was placed within the mouse dorsal subcutaneous tissues, we performed examinations using histopathological, histochemical and immunohistochemical techniques. Two weeks after embedment, the proliferation of granulation tissue had already begun to surround the calcification.Most of the cells observed were macrophages. Likewise, multinucleated giant cells increased significantly. The multinucleated giant cells were observed as two types. In one, the centers of the giant cells were vacuoles, while in the others there were deeply stained calcifications with hematoxylin. Twelve weeks after embedment of the materials, further growth of multinucleated giants cells were sighted. Histochemically, von Kossa-stainpositive granules were observed within the macrophages and multinucleated giant cells as black fine granules. According to the TRAP stained specimens, the multinucleated giant cells especially reacted strongly at 4 weeks. However, the reaction became very weak at 12 weeks. CD68 immunohistochemical staining showed positive reactions in the cytoplasm of the proliferating macrophages and multinucleated giant cells. These results suggest that multinucleated giant cells are present in the surrounding tissues due to implantation of the calcium hydroxidebased root canal filling material, and that the presence of ACP in the cells is due to ingested calcium during active phagocytosis, which would disappear later on

    Potential role of myeloid-derived suppressor cells in transition from reaction to repair phase of bone healing process

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with immunosuppressive functions; these cells play a key role in infection, immunization, chronic inflammation, and cancer. Recent studies have reported that immunosuppression plays an important role in the healing process of tissues and that Treg play an important role in fracture healing. MDSCs suppress active T cell proliferation and reduce the severity of arthritis in mice and humans. Together, these findings suggest that MDSCs play a role in bone biotransformation. In the present study, we examined the role of MDSCs in the bone healing process by creating a bone injury at the tibial epiphysis in mice. MDSCs were identified by CD11b and GR1 immunohistochemistry and their role in new bone formation was observed by detection of Runx2 and osteocalcin expression. Significant numbers of MDSCs were observed in transitional areas from the reactionary to repair stages. Interestingly, MDSCs exhibited Runx2 and osteocalcin expression in the transitional area but not in the reactionary area. And at the same area, cllagene-1 and ALP expression level increased in osteoblast progenitor cells. These data is suggesting that MDSCs emerge to suppress inflammation and support new bone formation. Here, we report, for the first time (to our knowledge), the role of MDSCs in the initiation of bone formation. MDSC appeared at the transition from inflammation to bone making and regulates bone healing by suppressing inflammation

    Long-Term Effect of Honeycomb beta-Tricalcium Phosphate on Zygomatic Bone Regeneration in Rats

    Get PDF
    In recent years, artificial bones with high biocompatibility have been developed for hard tissue reconstruction. However, current bone replacement methods are inadequate for large defects, causing infection, exposure, and damage. We have developed a new honeycomb beta-tricalcium phosphate (TCP) material, which achieved good bone regeneration after implantation in a rat complete zygomatic bone defect. In this study, we further investigated the ability of honeycomb beta- TCP for remodeling after bone regeneration as a long-term result. Bone morphogenic protein (BMP)-2-free honeycomb beta-TCP (TCP group) and honeycomb beta-TCP with BMP-2 (BMP group) were implanted in the zygomatic bone of rats. Micro-computed tomography was performed to track the zygomatic bone morphology, and specimens were histologically examined for osteogenesis and remodeling. In the TCP group, no bone formation was observed at 1 month, but it was observed at 6 months. Bone formation was observed in the BMP group at 1 month, and beta-TCP absorption reproducing the zygomatic bone morphology was observed at 6 months. This honeycomb beta-TCP with BMP-2 may provide appropriate remodeling that reproduces good bone formation in the early stage and good morphology in the long term, offering an alternative bone reconstruction material to vascularized bone grafts

    The Origin of Stroma Influences the Biological Characteristics of Oral Squamous Cell Carcinoma

    Get PDF
    Simple Summary Normal stromal cells play a significant role in the progression of cancers but are poorly investigated in oral squamous cell carcinoma (OSCC). In this study, we found that stromal cells derived from the gingival and periodontal ligament tissues could inhibit differentiation and promote the proliferation, invasion, and migration of OSCC both in vitro and in vivo. Furthermore, microarray data suggested that genes, such as CDK1, BUB1B, TOP2A, DLGAP5, BUB1, and CCNB2, probably play a role in influencing the different effects of gingival stromal tissue cells (G-SCs) and periodontal ligament stromal cells (P-SCs) on the progression of OSCC. Therefore, both G-SCs and P-SCs could promote the progression of OSCC, which could be a potential regulatory mechanism in the progression of OSCC. Normal stromal cells surrounding the tumor parenchyma, such as the extracellular matrix (ECM), normal fibroblasts, mesenchymal stromal cells, and osteoblasts, play a significant role in the progression of cancers. However, the role of gingival and periodontal ligament tissue-derived stromal cells in OSCC progression is unclear. In this study, the effect of G-SCs and P-SCs on the differentiation, proliferation, invasion, and migration of OSCC cells in vitro was examined by Giemsa staining, Immunofluorescence (IF), (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS), invasion, and migration assays. Furthermore, the effect of G-SCs and P-SCs on the differentiation, proliferation, and bone invasion by OSCC cells in vivo was examined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), and tartrate-resistant acid phosphatase (TRAP) staining, respectively. Finally, microarray data and bioinformatics analyses identified potential genes that caused the different effects of G-SCs and P-SCs on OSCC progression. The results showed that both G-SCs and P-SCs inhibited the differentiation and promoted the proliferation, invasion, and migration of OSCC in vitro and in vivo. In addition, genes, including CDK1, BUB1B, TOP2A, DLGAP5, BUB1, and CCNB2, are probably involved in causing the different effects of G-SCs and P-SCs on OSCC progression. Therefore, as a potential regulatory mechanism, both G-SCs and P-SCs can promote OSCC progression

    Effect of Honeycomb β-TCP Geometrical Structure on Bone Tissue Regeneration in Skull Defect

    Get PDF
    The effect of the geometric structure of artificial biomaterials on skull regeneration remains unclear. In a previous study, we succeeded in developing honeycomb beta-tricalcium phosphate (beta-TCP), which has through-and-through holes and is able to provide the optimum bone microenvironment for bone tissue regeneration. We demonstrated that beta-TCP with 300-mu m hole diameters induced vigorous bone formation. In the present study, we investigated how differences in hole directions of honeycomb beta-TCP (horizontal or vertical holes) influence bone tissue regeneration in skull defects. Honeycomb beta-TCP with vertical and horizontal holes was loaded with BMP-2 using Matrigel and Collagen gel as carriers, and transplanted into skull bone defect model rats. The results showed that in each four groups (Collagen alone group, Matrigel alone group, Collagen + BMP group and Matrigel + BMP-2), vigorous bone formation was observed on the vertical beta-TCP compared with horizontal beta-TCP. The osteogenic area was larger in the Matrigel groups (with and without BMP-2) than in the Collagen group (with and without BMP-2) in both vertical beta-TCP and horizontal beta-TCP. However, when BMP-2 was added, the bone formation area was not significantly different between the Collagen group and the Matrigel group in the vertical beta-TCP. Histological finding showed that, in vertical honeycomb beta-TCP, new bone formation extended to the upper part of the holes and was observed from the dura side to the periosteum side as added to the inner walls of the holes. Therefore, we can control efficient bone formation by creating a bone microenvironment provided by vertical honeycomb beta-TCP. Vertical honeycomb beta-TCP has the potential to be an excellent biomaterial for bone tissue regeneration in skull defects and is expected to have clinical applications

    Geometrical Structure of Honeycomb TCP to Control Dental Pulp-Derived Cell Differentiation

    Get PDF
    Recently, dental pulp has been attracting attention as a promising source of multipotent mesenchymal stem cells (MSCs) for various clinical applications of regeneration fields. To date, we have succeeded in establishing rat dental pulp-derived cells showing the characteristics of odontoblasts under in vitro conditions. We named them Tooth matrix-forming, GFP rat-derived Cells (TGC). However, though TGC form massive dentin-like hard tissues under in vivo conditions, this does not lead to the induction of polar odontoblasts. Focusing on the importance of the geometrical structure of an artificial biomaterial to induce cell differentiation and hard tissue formation, we previously have succeeded in developing a new biomaterial, honeycomb tricalcium phosphate (TCP) scaffold with through-holes of various diameters. In this study, to induce polar odontoblasts, TGC were induced to form odontoblasts using honeycomb TCP that had various hole diameters (75, 300, and 500 mu m) as a scaffold. The results showed that honeycomb TCP with 300-mu m hole diameters (300TCP) differentiated TGC into polar odontoblasts that were DSP positive. Therefore, our study indicates that 300TCP is an appropriate artificial biomaterial for dentin regeneration

    Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/b-tricalcium phosphate porous ceramics

    Get PDF
    The association of bone morphogenetic proteins (BMPs) with calcium phosphate bioceramics is known to confer them osteoinductive properties. The aim of this study was to evaluate the surface properties, especially regarding recombinant human BMP-2 (rhBMP-2) adsorption and release, of commercial sintered biphasic calcium phosphate ceramics after coating with biomimetic nanocrystalline apatite. The raw and coated ceramics exhibited similar macroporous structures but different nanometer-sized pores contents. Both types of ceramics showed Langmuir-type adsorption isotherms of rhBMP-2. The coating noticeably increased the rate of adsorption and the total amount of growth factor taken up, but the maximum coverage per surface area unit as well as the affinity constant appeared lower for coated ceramics compared with raw ceramic surfaces. The limited advantage gained by coating the ceramics can be assigned to a lower accessibility of the surface adsorption sites compared with the raw ceramics. The quantity of rhBMP-2 spontaneously released in cell culture medium during the first weeks was lower for coated samples than for uncoated ceramics and represented a minor fraction of the total adsorbed amount. In conclusion, the nanocrystalline apatite coating was found to favor the adsorption of rhBMP-2 while providing a mean to fine tune the release of the growth factor

    Notch signaling and ghost cell fate in the calcifying cystig odontogenic tumor

    Get PDF
    Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive

    An in vitro three-dimensional co-culture system for ameloblastoma modelling

    Get PDF
    Ameloblastoma, the most clinically significant odontogenic epithelial tumor, is a locally-invasive and destructive lesion in the jawbones. However, the nature of this infiltrativeness and destructive behavior remains ill-understood. To address this, we established an in vitro three-dimensional (3D) co-culture system to simulate an amelobastoma disease model aimed at investigating the interactions between tumor cells and osteoblasts. Osteoblastic cell lines (KUSA/A1 and MC3T3-E1) and one stromal cell line (ST2) were separately co-seeded with ameloblastoma-derived cell line (AM-1) in a collagen scaffold (representing the extracellular bone matrix) and incubated with mineralization medium. Immunohistochemistry, double immunofluorescence and mineralization assay were performed. Only AM-1/KUSA-A1 co-culture showed a significant increase in AM-1 cell count, suggesting that heterotypic cell-cell interaction promotes tumoral cell growth, while formation of visible AM-1 epithelial nest-like structures resembling ameloblastoma cells in their native state, suggest morphodifferentiation. A RANK-high, RANKL-low and osteoprotegerin-low immunoprofile in co-culture AM-1 cells implies deregulated osteoclastogenesis. Mineralization assays showed diminished calcification in AM-1/KUSA-A1 co-culture extracellular matrix suggesting an altered local bone metabolism. In contrast, KUSA/A1 monocultures showed abundant extracellular matrix calcification. Taken together, these results suggest that a 3D co-culture system as an amelobastoma disease model provides insights that bidirectional ameloblastoma-osteoblastic interactions might play a role in modulating tumor growth and osteoclastogenesis

    Impact of the Stroma on the Biological Characteristics of the Parenchyma in Oral Squamous Cell Carcinoma

    Get PDF
    Solid tumors consist of the tumor parenchyma and stroma. The standard concept of oncology is that the tumor parenchyma regulates the tumor stroma and promotes tumor progression, and that the tumor parenchyma represents the tumor itself and defines the biological characteristics of the tumor tissue. Thus, the tumor stroma plays a pivotal role in assisting tumor parenchymal growth and invasiveness and is regarded as a supporter of the tumor parenchyma. The tumor parenchyma and stroma interact with each other. However, the influence of the stroma on the parenchyma is not clear. Therefore, in this study, we investigated the effect of the stroma on the parenchyma in oral squamous cell carcinoma (OSCC). We isolated tumor stroma from two types of OSCCs with different invasiveness (endophytic type OSCC (ED-st) and exophytic type OSCC (EX-st)) and examined the effect of the stroma on the parenchyma in terms of proliferation, invasion, and morphology by co-culturing and co-transplanting the OSCC cell line (HSC-2) with the two types of stroma. Both types of stroma were partially positive for alpha-smooth muscle actin. The tumor stroma increased the proliferation and invasion of tumor cells and altered the morphology of tumor cells in vitro and in vivo. ED-st exerted a greater effect on the tumor parenchyma in proliferation and invasion than EX-st. Morphological analysis showed that ED-st changed the morphology of HSC-2 cells to the invasive type of OSCC, and EX-st altered the morphology of HSC-2 cells to verrucous OSCC. This study suggests that the tumor stroma influences the biological characteristics of the parenchyma and that the origin of the stroma is strongly associated with the biological characteristics of the tumor
    corecore