77 research outputs found

    Quest for a potent antimalarial drug lead: synthesis and evaluation of 6,7-dimethoxyquinazoline-2,4-diamines

    Get PDF
    Quinazolines have long been known to exert varied pharmacologic activities that make them suitable for use in treating hypertension, viral infections, tumors, and malaria. Since 2014, we have synthesized approximately 150 different 6,7-dimethoxyquinazoline-2,4-diamines and evaluated their antimalarial activity via structure-activity relationship studies. Here, we summarize the results and report the discovery of 6,7-dimethoxy-N(4)-(1-phenylethyl)-2-(pyrrolidin-1-yl)quinazolin-4-amine (20, SSJ-717), which exhibits high antimalarial activity as a promising antimalarial drug lead

    Synthetic and computational studies on the tricarboxylate core of 6,7-dideoxysqualestatin H5 involving a carbonyl ylide cycloaddition–rearrangement

    Get PDF
    Reaction of diazodiketoesters 17 and 28 with methyl glyoxylate in the presence of catalytic rhodium(II) acetate generates predominantly the 6,8-dioxabicyclo[3.2.1]octanes 29 and 30, respectively. Acid-catalysed rearrangement of the corresponding alcohol 31 favours, at equilibrium, the 2,8-dioxabicyclo[3.2.1]octane skeleton 33 of the squalestatins–zaragozic acids. Force field calculations on the position of the equilibrium gave misleading results. DFT calculations were correct in suggesting that the energy difference between 31 and 33 should be small, but did not always suggest the right major product. Calculation of the NMR spectra of the similar structures could be used to assign the isomers with a high level of confidence

    Systematic In Vivo Analysis of the Intrinsic Determinants of Amyloid β Pathogenicity

    Get PDF
    Protein aggregation into amyloid fibrils and protofibrillar aggregates is associated with a number of the most common neurodegenerative diseases. We have established, using a computational approach, that knowledge of the primary sequences of proteins is sufficient to predict their in vitro aggregation propensities. Here we demonstrate, using rational mutagenesis of the Aβ42 peptide based on such computational predictions of aggregation propensity, the existence of a strong correlation between the propensity of Aβ42 to form protofibrils and its effect on neuronal dysfunction and degeneration in a Drosophila model of Alzheimer disease. Our findings provide a quantitative description of the molecular basis for the pathogenicity of Aβ and link directly and systematically the intrinsic properties of biomolecules, predicted in silico and confirmed in vitro, to pathogenic events taking place in a living organism

    Instability of aquaglyceroporin (Aqp) 2 contributes to drug resistance in trypanosoma brucei

    Get PDF
    Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance

    Development of Cysteine-Free Fluorescent Proteins for the Oxidative Environment

    Get PDF
    Molecular imaging employing fluorescent proteins has been widely used to highlight specific reactions or processes in various fields of the life sciences. Despite extensive improvements of the fluorescent tag, this technology is still limited in the study of molecular events in the extracellular milieu. This is partly due to the presence of cysteine in the fluorescent proteins. These proteins almost cotranslationally form disulfide bonded oligomers when expressed in the endoplasmic reticulum (ER). Although single molecule photobleaching analysis showed that these oligomers were not fluorescent, the fluorescent monomer form often showed aberrant behavior in folding and motion, particularly when fused to cysteine-containing cargo. Therefore we investigated whether it was possible to eliminate the cysteine without losing the brightness. By site-saturated mutagenesis, we found that the cysteine residues in fluorescent proteins could be replaced with specific alternatives while still retaining their brightness. cf(cysteine-free)SGFP2 showed significantly reduced restriction of free diffusion in the ER and marked improvement of maturation when fused to the prion protein. We further applied this approach to TagRFP family proteins and found a set of mutations that obtains the same level of brightness as the cysteine-containing proteins. The approach used in this study to generate new cysteine-free fluorescent tags should expand the application of molecular imaging to the extracellular milieu and facilitate its usage in medicine and biotechnology

    Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury

    Get PDF
    BACKGROUND: The ubiquitin-proteasome-system (UPS) is the major intracellular pathway leading to the degradation of unwanted and/or misfolded soluble proteins. This includes proteins regulating cellular survival, synaptic plasticity and neurotransmitter signaling; processes controlling excitability thresholds that are altered by epileptogenic insults. Dysfunction of the UPS has been reported to occur in a brain region- and cell-specific manner and contribute to disease progression in acute and chronic brain diseases. Prolonged seizures, status epilepticus, may alter UPS function but there has been no systematic attempt to map when and where this occurs in vivo or to determine the consequences of proteasome inhibition on seizure-induced brain injury. METHOD: To determine whether seizures lead to an impairment of the UPS, we used a mouse model of status epilepticus whereby seizures are triggered by an intra-amygdala injection of kainic acid. Status epilepticus in this model causes cell death in selected brain areas, in particular the ipsilateral CA3 subfield of the hippocampus, and the development of epilepsy after a short latent period. To monitor seizure-induced dysfunction of the UPS we used a UPS inhibition reporter mouse expressing the ubiquitin fusion degradation substrate ubiquitin(G76V)-green fluorescent protein. Treatment with the specific proteasome inhibitor epoxomicin was used to establish the impact of proteasome inhibition on seizure-induced pathology. RESULTS AND CONCLUSIONS: Our studies show that status epilepticus induced by intra-amygdala kainic acid causes select spatio-temporal UPS inhibition which is most evident in damage-resistant regions of the hippocampus, including CA1 pyramidal and dentate granule neurons then appears later in astrocytes. In support of this exerting a beneficial effect, injection of mice with the proteasome inhibitor epoxomicin protected the normally vulnerable hippocampal CA3 subfield from seizure-induced neuronal death in the model. These studies reveal brain region- and cell-specific UPS impairment occurs after seizures and suggest UPS inhibition can protect against seizure-induced brain damage. Identifying networks or pathways regulated through the proteasome after seizures may yield novel target genes for the treatment of seizure-induced cell death and possibly epilepsy
    corecore