85 research outputs found

    Structural modification of bacterial cellulose fibrils under ultrasonic irradiation

    Get PDF
    Ιn the present study we investigated ultrasounds as a pretreatment process for bacterial cellulose (BC) aqueous suspensions. BC suspensions (0.1–1% wt) subjected to an ultrasonic treatment for different time intervals. Untreated BC presented an extensively entangled fibril network. When a sonication time of 1 min was applied BC fibrils appeared less bundled and dropped in width from 110 nm to 60 nm. For a longer treatment (3–5 min) the width of the fibrils increased again to 100 nm attributed to an entanglement of their structure. The water holding capacity (WHC) and ζ-potnential of the suspensions was proportional to the sonication time. Their viscosity and stability were also affected; an increase could be seen at short treatments, while a decrease was obvious at longer ones. Concluding, a long ultrasonic irradiation led to similar BC characteristics as the untreated, but a short treatment may be a pre-handling method for improving BC properties

    Extraction of Phenolic Compounds from Palm Oil Processing Residues and Their Application as Antioxidants

    Get PDF
    Nusproizvodi proizvodnje palminog ulja, i to pogača od palminih sjemenki, palmina vlakna, ljuske palminih sjemenki i prazni grozdovi palminog ploda, upotrijebljeni su za ekstrakciju polifenolnih spojeva. Među tim nusproizvodima je pogača od palminih sjemenki sadržavala najviše ukupnih fenolnih spojeva, i to 5,19 mg u g suhe tvari, izraženih kao ekvivalent galne kiseline, dok je najmanje imao prazni grozd palminog ploda, i to 1,79 mg/g. Radi optimiranja ekstrakcije fenola ispitani su sljedeći parametri: vrijeme ekstrakcije i omjer tekuće i krute tvari. Najveći ukupni udjel fenola od 5,35 mg/g pri omjeru tekuće i krute tvari od 40:1 tijekom ekstrakcije od 20 min imala je pogača od palminih sjemenki. Pomoću HPLC-DAD metode određeni su glavni fenolni spojevi iz nusprodukata proizvodnje palminog ulja. Pogača od palminih sjemenki sadržavala je najviše pirogalola, te 4-hidroksibenzojeve, galne i ferulinske kiseline. Prazni grozdovi palminog ploda i palmina vlakna bili su bogati hidroksibenzojevom kiselinom, dok je pirogalol bio dominantan sastojak ekstrakta ljuski palminih sjemenki. Svi su ekstrakti imali oksidacijsku aktivnost, koja je potvrđena DPPH analizom, te ispitana dodatkom ekstrakta suncokretovom ulju radi produljenja roka trajanja. Dodatkom 0,8 % ekstrakta pogače od palminih sjemenki povećalo se indukcijsko vrijeme suncokretovog ulja za više od 50 %. Rezultati istraživanja potvrđuju da je pogača od palminih sjemenki nusproizvod s dodanom vrijednošću koji se može upotrijebiti kao antioksidans u prehrambenoj industriji.The side streams derived from the palm oil production process, namely palm kernel cake, palm pressed fibre, palm kernel shells and empty fruit bunches, were evaluated as sources of phenolic compounds. Among these streams, kernel cake had the highest total phenolic content (in mg of gallic acid equivalents (GAE) per g of dry sample) with a value of 5.19, whereas the empty fruit bunches had the lowest value (1.79). The extraction time and liquid-to-solid ratio were investigated to optimize the phenolic extraction. Kernel cake exhibited the highest total phenolic content (5.35 mg/g) with a liquid-to-solid ratio of 40:1 during 20 min of extraction. The main phenolic compounds of the extracts deriving from all byproduct streams were also identified and quantified with HPLC-DAD. Pyrogallol, 4-hydroxybenzoic acid, gallic acid and ferulic acid were the main compounds found in kernel cake extracts. Empty fruit bunch and pressed fibre extracts were also rich in 4-hydroxybenzoic acid, while pyrogallol was the predominant compound in kernel shell extracts. All extracts showed antioxidant activity as it was indicated from the results of DPPH analysis and subsequently tested in sunflower oil aiming to prolong its shelf life. The addition of 0.8 % kernel cake extract increased the induction time of sunflower oil more than 50 %. According to the results obtained in this study, kernel cake extracts could be considered as a value-added co-product with a potential application as antioxidants in the food industry

    Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3

    Get PDF
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.carpta.2020.100022.In this work, a novel Bacterial NanoCellulose (BNC) producing strain, from Kombucha tea, was isolated and characterized. Based on 16S rRNA analysis the strain was identified as Komagataeibacter rhaeticus. Under static culture, K. rhaeticus K3 produces membranes with a relaxed structure, as observed by Scanning Electron Microscopy (SEM). The addition of 2% (v/v) ethanol to the culture media enhanced by more than 3-fold of the BNC yield. Response surface methodology (RSM) was performed with K. rhaeticus K3, using a new low cost Eucalyptus Biomass Hydrolysate (EBH). The maximum experimental BNC yield was of 5.46 g/L, obtained with the following composition: 31.4 g/L of EBH; 2.89% (v/v) of ethanol and 10.8 g/L of Yeast extract/peptone. Texture Profile Analysis (TPA) of BNC membranes obtained using Hestrin-Schramm culture (HS) medium and optimized medium from EBH showed that membranes from EBH had higher resistance to compression, higher cohesiveness and resilience.This study was supported with the funds of Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland and from The Navigator Company through the I&D no. 21874, “Inpactus-– Produtos e Tecnologias Inovadores a partir do Eucalipto”, funded through the Fundo Europeu de Desenvolvimento Regional (FEDER) and the Programa Operacional Competitividade e Internacionalização (POCI) is greatly acknowledged. This study was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.” The authors also acknowledge the financial support of the FCT (ESF) through the grant given to Francisco A.G. Soares da Silva (SFRH/BD/146375/2019).info:eu-repo/semantics/publishedVersio

    Synthesis and Characterization of Bacterial Cellulose from Citrus-Based Sustainable Resources

    Get PDF
    Citrus juices from whole oranges and grapefruits (discarded from open market) and aqueous extracts from citrus processing waste (mainly peels) were used for bacterial cellulose production by Komagataeibacter sucrofermentans DSM 15973. Grapefruit and orange juices yielded higher bacterial cellulose concentration (6.7 and 6.1 g/L, respectively) than lemon, grapefruit, and orange peels aqueous extracts (5.2, 5.0, and 2.9 g/L, respectively). Compared to the cellulosic fraction isolated from depectinated orange peel, bacterial cellulose produced from orange peel aqueous extract presented improved water-holding capacity (26.5 g water/g, 3-fold higher), degree of polymerization (up to 6-fold higher), and crystallinity index (35-86% depending on the method used). The presence of absorption bands at 3240 and 3270 cm-1 in the IR spectrum of bacterial cellulose indicated that the bacterial strain K. sucrofermentans synthesizes both Iα and Iβ cellulose types, whereas the signals in the 13C NMR spectrum demonstrated that Iα cellulose is the dominant type

    Androgens Regulate Prostate Cancer Cell Growth via an AMPK-PGC-1?-Mediated Metabolic Switch

    Get PDF
    Prostate cancer is the most commonly diagnosed malignancy among men in industrialized countries, accounting for the second leading cause of cancer-related deaths. While we now know that the androgen receptor (AR) is important for progression to the deadly advanced stages of the disease, it is poorly understood what AR-regulated processes drive this pathology. Here, we demonstrate that AR regulates prostate cancer cell growth via the metabolic sensor 5?-AMP-activated protein kinase (AMPK), a kinase that classically regulates cellular energy homeostasis. In patients, activation of AMPK correlated with prostate cancer progression. Using a combination of radiolabeled assays and emerging metabolomic approaches, we also show that prostate cancer cells respond to androgen treatment by increasing not only rates of glycolysis, as is commonly seen in many cancers, but also glucose and fatty acid oxidation. Importantly, this effect was dependent on androgen-mediated AMPK activity. Our results further indicate that the AMPK-mediated metabolic changes increased intracellular ATP levels and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1?)-mediated mitochondrial biogenesis, affording distinct growth advantages to the prostate cancer cells. Correspondingly, we used outlier analysis to determine that PGC-1? is overexpressed in a subpopulation of clinical cancer samples. This was in contrast to what was observed in immortalized benign human prostate cells and a testosterone-induced rat model of benign prostatic hyperplasia. Taken together, our findings converge to demonstrate that androgens can co-opt the AMPK-PGC-1? signaling cascade, a known homeostatic mechanism, to increase prostate cancer cell growth. The current study points to the potential utility of developing metabolic-targeted therapies directed towards the AMPK-PGC-1? signaling axis for the treatment of prostate cancer

    A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: evaluation of BC for adsorption of phenolic compounds, dyes and metals

    Get PDF
    BackgroundThe main challenge for large-scale production of bacterial cellulose (BC) includes high production costs interlinked with raw materials, and low production rates. The valorization of renewable nutrient sources could improve the economic effectiveness of BC fermentation while their direct bioconversion into sustainable biopolymers addresses environmental pollution and/or resource depletion challenges. Herein a green bioprocess was developed to produce BC in high amounts with the rather unexplored bacterial strain Komagataeibacter rhaeticus, using waste streams such as wine distillery effluents (WDE) and biodiesel-derived glycerol. Also, BC was evaluated as a bio-adsorbent for phenolics, dyes and metals removal to enlarge its market diversification.ResultsBC production was significantly affected by the WDE mixing ratio (0–100%), glycerol concentration (20–45 g/L), type of glycerol and media-sterilization method. A maximum BC concentration of 9.0 g/L, with a productivity of 0.90 g/L/day and a water holding capacity of 60.1 g water/g dry BC, was achieved at 100% WDE and ≈30 g/L crude glycerol. BC samples showed typical cellulose vibration bands and average fiber diameters between 37.2 and 89.6 nm. The BC capacity to dephenolize WDE and adsorb phenolics during fermentation reached respectively, up to 50.7% and 26.96 mg gallic acid equivalents/g dry BC (in-situ process). The produced BC was also investigated for dye and metal removal. The highest removal of dye acid yellow 17 (54.3%) was recorded when 5% of BC was applied as the bio-adsorbent. Experiments performed in a multi-metal synthetic wastewater showed that BC could remove up to 96% of Zn and 97% of Cd.ConclusionsThis work demonstrated a low-carbon approach to produce low-cost, green and biodegradable BC-based bio-adsorbents, without any chemical modification. Their potential in wastewater-treatment-applications was highlighted, promoting closed-loop systems within the circular economy era. This study may serve as an orientation for future research towards competitive or targeted adsorption technologies for wastewater treatment or resources recovery

    Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films

    Get PDF
    This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m-2. The optical-structural, mechanical and barrier property of BC films were studied and compared with those of highly beaten VC films. The Youngs moduli and tensile index of the BC films are much higher than those obtained for VC (14.5 16.2 GPa vs 10.8 8.7 GPa and 146.7 64.8 N.m.g-1 vs 82.8 40.5 N.m.g-1), respectively. Calendering increased significantly the transparency of BC films from 53.0 % to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.The authors thank FCT (Fundação para a Ciência e Tecnologia) and FEDER (Fundo Europeu de Desenvolvimento Regional) for the financial support of the project FCT PTDC/AGR-FOR/3090/2012— FCOMP-01-0124-FEDER-027948 and the awarding of a research grant for Vera Costa

    Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity

    Get PDF
    Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract distinct expression profiles for the different tissue components, such as stroma, normal and PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby provide insight into gene expression changes during the progression of prostate cancer. Compared to pathologist annotations, we delineate the extent of cancer foci more accurately, interestingly without link to histological changes. We identify gene expression gradients in stroma adjacent to tumor regions that allow for re-stratification of the tumor microenvironment. The establishment of these profiles is the first step towards an unbiased view of prostate cancer and can serve as a dictionary for future studies

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore