5 research outputs found

    Winnerless competition between sensory neurons generates chaos: A possible mechanism for molluscan hunting behavior

    Full text link
    © 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.In the presence of prey, the marine mollusk Clione limacina exhibits search behavior, i.e., circular motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical model of the chaotic hunting behavior of Clione based on physiological in vivo and in vitroexperiments. The model includes a description of the action of the cerebral hunting interneuron on the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model neurons with Lotka–Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple static attractors that correspond to winner take all phenomena. Instead, the winnerless competition induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The origin of the chaos is related to the interaction of two clusters of receptor neurons that are described with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor neurons can drive the complex behavior of Clione observed during hunting.Support for this work came from NIH Grant No. 2R01 NS38022- 05A1. P.V. acknowledges support from MCT BFI2000-0157. M.R. acknowledges support from U.S. Department of Energy Grant No. DE-FG03-96ER14592

    Structural and Functional Organization of the Vestibular Apparatus in Rats Subjected to Weightlessness for 19.5 Days Aboard the Kosmos-782 Satellite

    Get PDF
    The vestibular apparatus was investigated in rats subjected to weightlessness for 19.5 days. The vestibular apparatus was removed and its sections were fixed in a glutaraldehyde solution for investigation by light and electron microscopes. Structural and functional charges were noted in the otolith portions of the ear, with the otolith particles clinging to the utricular receptor surface and with the peripheral arrangement of the nucleolus in the nuclei of the receptor cells. It is possible that increased edema of the vestibular tissue resulted in the destruction of some receptor cells and in changes in the form and structure of the otolith. In the horizontal crista, the capula was separated

    The sense of hearing in the Pacific oyster, Magallana gigas

    No full text
    There is an increasing concern that anthropogenic noise could have a significant impact on the marine environment, but there is still insufficient data for most invertebrates. What do they perceive? We investigated this question in oysters Magallana gigas (Crassostrea gigas) using pure tone exposures, accelerometer fixed on the oyster shell and hydrophone in the water column. Groups of 16 oysters were exposed to quantifiable waterborne sinusoidal sounds in the range of 10 Hz to 20 kHz at various acoustic energies. The experiment was conducted in running seawater using an experimental flume equipped with suspended loudspeakers. The sensitivity of the oysters was measured by recording their valve movements by high-frequency noninvasive valvometry. The tests were 3 min tone exposures including a 70 sec fade-in period. Three endpoints were analysed: the ratio of responding individuals in the group, the resulting changes of valve opening amplitude and the response latency. At high enough acoustic energy, oysters transiently closed their valves in response to frequencies in the range of 10 to <1000 Hz, with maximum sensitivity from 10 to 200 Hz. The minimum acoustic energy required to elicit a response was 0.02 m∙s-2 at 122 dBrms re 1 μPa for frequencies ranging from 10 to 80 Hz. As a partial valve closure cannot be differentiated from a nociceptive response, it is very likely that oysters detect sounds at lower acoustic energy. The mechanism involved in sound detection and the ecological consequences are discussed
    corecore