434 research outputs found

    Sea level extremes in the Caribbean Sea

    Get PDF
    Sea level extremes in the Caribbean Sea are analyzed on the basis of hourly records from 13 tide gauges. The largest sea level extreme observed is 83 cm at Port Spain. The largest nontidal residual in the records is 76 cm, forced by a category 5 hurricane. Storm surges in the Caribbean are primarily caused by tropical storms and stationary cold fronts intruding the basin. However, the seasonal signal and mesoscale eddies also contribute to the creation of extremes. The five stations that have more than 20 years of data show significant trends in the extremes suggesting that flooding events are expected to become more frequent in the future. The observed trends in extremes are caused by mean sea level rise. There is no evidence of secular changes in the storm activity. Sea level return periods have also been estimated. In the south Colombian Basin, where large hurricane-induced surges are rare, stable estimates can be obtained with 30 years of data or more. For the north of the basin, where large hurricane-induced surges are more frequent, at least 40 years of data are required. This suggests that the present data set is not sufficiently long for robust estimates of return periods. ENSO variability correlates with the nontidal extremes, indicating a reduction of the storm activity during positive ENSO events. The period with the highest extremes is around October, when the various sea level contributors' maxima coincide

    A systematic assessment of maritime disruptions affecting UK ports, coastal areas and surrounding seas from 1950 to 2014

    Get PDF
    Maritime disruptions can have severe negative implications including affecting business operations, regional and national economies and causing damage to vessels. This study analysed maritime disruptions in UK ports, coastal areas and surrounding seas from 1950 to 2014, systematically assessing their scale, duration, extent and consequences. Disruptions are a single or sequence of hazardous events that negatively affect ‘business as usual’ conditions, ranging from minor to major disruption and even loss of life. To express this range, a severity scale was developed and applied. A database of maritime disruptions and their severities was constructed using data archaeology, identifying 88 events, primarily caused by wind storms (36 %), human error (23 %), mechanical faults (14 %) and storm surges (12 %). All events other than human error or mechanical faults occurred between October and March (typically associated with autumn/winter storms and depressions), with 65 % recorded between November and January. Maritime disruptions from weather events tended to have regional/national impacts, whereas human error or mechanical faults were usually locally severe. Since 2000, ports demonstrated more frequent disruption to wind storms due to mechanization, increased delay and closure reporting, and refined health and safety regulations. Most frequently affected were the sea areas Fair Isle and Dover, and the Felixstowe and Dover ports. Through time, primary impacts shifted from extensive flooding and structural damage to financial impacts and disruption, associated with adaptation including implementation/upgrading of coastal defences, storm warning systems and legislation. Port and governmental bodies responded adaptively (e.g. Thames Barrier construction and development of automatic tracking systems). The UK’s maritime disruption vulnerability has altered significantly since 1950 and continues to evolve

    Seeking best practice in online learning: Flexible learning toolboxes in the Australian VET sector

    Get PDF
    This paper describes The Flexible Learning Toolboxes Project , a component of the Australian Flexible Learning Framework for the National Vocational Education and Training System 2000-2004 (AFL Framework). The AFL Framework is designed to support the accelerated take-up of flexible learning modes and position Australian VET as a world leader in applying new technologies to vocational education products and services. A Toolbox is a set of learning resources designed for web based delivwww.ascilite.orgs customisation and reuse in the National Training Framework, which forms the basis of qualifications and accreditation in the Australian VET sector. The paper describes aspects of the Project and discusses the innovative design approaches that are being used to create quality online learning resources. Examples of several Toolboxes are provided to demonstrate the forms of online learning settings that have been developed for the Australian VET sector

    The seasonal cycle and variability of sea level in the South China Sea

    Get PDF
    The spatial and temporal characteristics of the seasonal sea level cycle in the South China Sea (SCS) and its forcing mechanisms are investigated using tide gauge records and satellite altimetry observations along with steric and meteorological data. The coastal mean annual amplitude of the seasonal cycle varies between zero and 24 cm, reaching a maximum between July and January. The maximum mean semiannual amplitude is 7 cm, peaking between March and June. Along the coast, the seasonal cycle accounts for up to 92% of the mean monthly sea level variability. Atmospheric pressure explains a significant portion of the seasonal cycle with dominant annual signals in the northern SCS, the Gulf of Thailand and the north-western Philippines Sea. The wind forcing is dominant on the shelf areas of the SCS and the Gulf of Thailand where a simple barotropic model forced by the local wind shows annual amplitudes of up to 27 cm. In the deep basin of the SCS, the Philippines Sea and the shallow Malacca Strait, the steric component is the major contributor with the maximum annual amplitudes reaching 15 cm. Significant variability in the seasonal cycle is found on a year-to-year basis. The annual and semiannual amplitudes vary by up to 63% and 45% of the maximum values, 15 cm and 11 cm, respectively. On average, stepwise regression analysis of contribution of different forcing factors accounts for 66% of the temporal variability of the annual cycle. The zonal wind was found to exert considerable influence in the Malacca Strait

    The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones

    Get PDF
    Storm surges are responsible for great damage to coastal property and loss of life every year. Coastal management and adaptation practices are essential to reduce such damage. Numerical models provide a useful tool for informing these practices as they simulate sea level with high spatial resolution. Here we investigate the ability of a barotropic version of the HAMSOM model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. For this purpose, the output of the model is compared to hourly sea level observations from six tide gauge records (Valencia, Barcelona, Marseille, Civitavecchia, Trieste, and Antalya). It is found that the model underestimates the positive extremes significantly at all stations, in some cases by up to 65%. At Trieste, the model can also sometimes overestimate the extremes significantly. The differences between the model and the residuals are not constant for extremes of a given height, which limits the applicability of the numerical model for storm surge forecasting because calibration is difficult. The 50 and 10 year return levels are reasonably well captured by the model at all stations except Barcelona and Marseille, where they are underestimated by over 30%. The number of exceedances of the 99.9th and 99.95% percentiles over a period of 25 years is severely underestimated by the model at all stations. The skill of the model for predicting the timing and value of the storm surges seems to be higher for the events associated with explosive cyclones at all stations

    Spatial and temporal variations of the seasonal sea level cycle in the northwest Pacific

    Get PDF
    The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents

    Impact of the atmospheric climate modes on wave climate in the North Atlantic

    Get PDF
    Trabajo presentado en la EGU General Assemby 2014, celebrada del 27 de abril al 2 de mayo de 2014 en Viena (Austria)This study establishes the relationships between the mean modes of atmospheric variability in the North Atlantic and present wave climate. The modes considered, namely the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic Western Russian pattern (EA/WR) and the Scandinavian pattern (SCAN), are obtained from the NOAA Climate Prediction Centre. The wave data sets used consist of buoy records and two high-resolution simulations of significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) forced with ERA-40 (1958-2002) and ERA-INTERIM (1989-2008) wind fields. The results show the winter impact of each mode on wave parameters which are discussed regionally. The NAO and EA pattern increase winter SWH up to 1 m per unit index at the Scottish and Spanish coasts, respectively, during their positive phase; while EA pattern causes clockwise changes of winter MWD up to more than 60 degrees per unit index at the Bay of Biscay during its negative phase. EA/WR and SCAN patterns have a weaker impactPeer Reviewe

    Decadal variability of European sea level extremes in relation to the solar activity

    Get PDF
    This study investigates the relationship between decadal changes in solar activity and sea level extremes along the European coasts and derived from tide gauge data. Autumn sea level extremes vary with the 11 year solar cycle at Venice as suggested by previous studies, but a similar link is also found at Trieste. In addition, a solar signal in winter sea level extremes is also found at Venice, Trieste, Marseille, Ceuta, Brest, and Newlyn. The influence of the solar cycle is also evident in the sea level extremes derived from a barotropic model with spatial patterns that are consistent with the correlations obtained at the tide gauges. This agreement indicates that the link to the solar cycle is through modulation of the atmospheric forcing. The only atmospheric regional pattern that showed variability at the 11 year period was the East Atlantic pattern

    An additional deep-water mass in Drake Passage as revealed by 3He data

    Get PDF
    We present 3He data froma repeat section across Drake Passage, fromthree sections off the South American continent in the Pacific, at 28?S, 35?S, and 43?S, and fromthree sections in the Atlantic, eastward of the Malvinas, close to 35?W, and near the Greenwich Meridian. In Drake Passage, a distinct high-3He signal is observed that is centered just above the boundary of the Lower and the Upper Circumpolar Deep Water (LCDW, UCDW), and is concentrated towards the northern continental slope. 3He concentrations in the Antarctic Circumpolar Current (ACC) upstream of Drake Passage (World Ocean Circulation Experiment section P19 at 88?W) are markedly lower than those found in Drake Passage, and a regional source of primordial helium in the path of the ACC that might cause the high-3He feature can be ruled out. We explain the feature by addition of high-3He waters present at the 43?S Pacific section. This supports a previous, similar interpretation of a low-salinity anomaly in Drake Passage (Naveira Garabato et al., Deep- Sea Research I 49 (2002) 681), that is strongly related to the high-3He feature. Employing multiparameter water mass analysis (including 3He as a parameter), we find that deep waters as met at the 43?S Pacific section, flowing south along the South American continental slope, contribute substantially to the ACC waters in Drake Passage (fractions exceed 50% locally). Lesser, but laterally more extended contributions are found east of the Malvinas, and still smaller ones are present at 35?W and at the Greenwich Meridian. Using velocity measurements from one of the two Drake Passage sections, we estimate the volume transport of these waters to be 7.071.2 Sv, but the average transport may be somewhat lower as the other realization had a less pronounced signal. The enhanced 3He signature in Drake Passage is essentially confined north of the Polar Front. Further downstreamthe signature crosses this front, to the extent that at 35?W the contributions south and north of it are of similar magnitude. At the same time, the 3He levels north of the front are reduced due to a substantial admixture of low-3He North Atlantic Deep Water, such that 3He becomes highest south of the front. The flow of Southeast Pacific deep slope waters entering the ACC constitutes the predominant exit pathway of the primordial helium released in the deep Pacific, and represents a considerable fraction of the deep water return flow fromthe Pacific into the ACC. Therefore and also because the density range of the added deep slope waters is intermediate between those of UCDW and LCDW, they must be considered a distinct water mass. r 2003 Elsevier Ltd. All rights reserved
    corecore