27 research outputs found

    Chirality in isotropic linear gradient elasticity

    Get PDF
    AbstractChirality is, generally speaking, the property of an object that can be classified as left- or right-handed. Though it plays an important role in many branches of science, chirality is encountered less often in continuum mechanics, so most classical material models do not account for it. In the context of elasticity, for example, classical elasticity is not chiral, leading different authors to use Cosserat elasticity to allow modelling of chiral behaviour.Gradient elasticity can also model chiral behaviour, however this has received much less attention than its Cosserat counterpart. This paper shows how in the case of isotropic linear gradient elasticity a single additional parameter can be introduced that describes chiral behaviour. This additional parameter, directly linked to three-dimensional deformation, can be either negative or positive, with its sign indicating a discrimination between the two opposite directions of torsion. Two simple examples are presented to show the practical effects of the chiral behaviour

    The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity

    Get PDF
    In this paper, we deal with the asymptotic problem of a body of infinite extent with a notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient elasticity. This generalized continuum theory is appropriate to model the response of materials with microstructure. A linear version of the theory results by considering a linear isotropic expression for the strain-energy density that depends on strain-gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lamé constants . The faces of the notch are considered to be traction-free and a boundary-layer approach is followed. The boundary value problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the general notch (infinite wedge) problem. The results show significant departure from the predictions of the standard fracture mechanics

    Αριθμητική επίλυση προβλημάτων βαθμοελαστικότητας

    No full text
    In the present Doctoral Thesis a boundary element methodology (BEM) is developed in order to solve numerically 3-D and axis-symmetric static gradient elastic problems. Microstructural effects on the macroscopic behavior of the considered materials have been taken into account by means of a simple strain gradient theory with surface energy obtained as a special case of the general one due to Mindlin, proposed by Vardoulakis and Sulem. All possible boundary conditions (classical and non-classical) have been determined with the aid of a variational statement of the problem. The fundamental solution of the gradient elastic with surface energy has been explicitly determined and used to establish the boundary integral representation of the solution of the problem with the aid of the reciprocal identity, specifically constructed for this gradient elastic with surface energy case. The boundary integral representation consists of one equation for the dispalcement and another one for its normal derivative. Also, the integral forms of the gradient of displacement as well as the Cauchy, relative, double and total stresses in the interior of the gradient elastic body have been derived and presented. The numerical implementation of the integral equations is accomplished with the aid of quadratic isoparametric line (axis-symmetry case) and surface (3-D case) boundary elements. The computation of the singular and hyper-singular integrals involved is done with the aid of highly accurate advanced algorithms.Σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη μεθοδολογίας συνοριακών στοιχείων για την αριθμητική επίλυση τρισδιάστατων (3-D) στατικών προβλημάτων στα πλαίσια μιας θεωρίας βαθμοελαστικότητας, που στηρίζεται σε μια απλουστευμένης μορφής της θεωρίας του Mindlin και διατυπώθηκε από τους Vardoulakis and Sulem, η οποία λαμβάνει υπόψη και την επιφανειακή ενέργεια, και από τους Aifantis και συνεργάτες. Η διδακτορική διατριβή αποτελείται από δύο ενότητες. Στην πρώτη ενότητα (κεφάλαια 1 και 2) γίνεται μία πλήρης ανασκόπηση της βιβλιογραφίας ως προς τις θεωρίες βαθμοελαστικότητας και στη συνέχεια, περιγράφεται διεξοδικά η παρούσα θεωρία βαθμοελαστικότητας με επιφανειακή ενέργεια. Στη δεύτερη ενότητα παρουσιάζεται η μέθοδος των Συνοριακών Στοιχείων (ΜΣΣ) όπως αυτή εφαρμόζεται για την επίλυση τρισδιάστατων και αξονοσυμμετρικών βαθμοελαστικών προβλημάτων, αντίστοιχα. Η ΜΣΣ βασίζεται στη διατύπωση των ολοκληρωτικών εξισώσεων των βαθμοελαστικών προβλημάτων. Οι άγνωστοι των ολοκληρωτικών εξισώσεων είναι οι συνοριακές τιμές του βασικού πεδίου των μεταβλητών και οι παράγωγοί τους, που για τη βαθμοελαστικότητα είναι τα διανύσματα των μετατοπίσεων, των βαθμίδων τω μετατοπίσεων και τα διανύσματα των επιφανειακών τάσεων. Η προσέγγιση των συναρτήσεων αυτών πάνω στο σύνορο γίνεται με τη βοήθεια συναρτήσεων παρεμβολής από τις αντίστοιχες τιμές τους σε έναν επιλεγμένο αριθμό κόμβων. Η ταχύτητα και η ακρίβεια της ΜΣΣ κατά την εφαρμογή της επηρεάζεται σημαντικά από την ταχύτητα και την ακρίβεια του υπολογισμού των ιδιόμορφων και υπερ-ιδιόμορφων ολοκληρωμάτων. Στην παρούσα διατριβή τα ιδιόμορφα και υπερ-ιδιόμορφα ολοκληρώματα υπολογίζονται με τη χρήση τεχνικών ιδιόμορφης και υπερ-ιδιόμορφης ολοκλήρωσης (Guiggiani (1992) και Huber et al. (1993)) αντίστοιχα. Στα πλαίσια της παρούσας διδακτορικής διατριβής κατασκευάστηκε αλγόριθμος που επιλύει τρισδιάστατα στατικά προβλήματα βαθμοελαστικότητας καθώς και αλγόριθμος που επιλύει στατικά βαθμοελαστικά προβλήματα με αξονική συμμετρία. Στο τέλος κάθε κεφαλαίου, επιλύονται αντίστοιχα στατικά βαθμοελαστικά προβλήματα με ή χωρίς να λαμβάνεται υπόψη η επιφανειακή ενέργεια και με γνωστές αναλυτικές λύσεις. Τα αριθμητικά αποτελέσματα των παραπάνω προβλημάτων συγκρίνονται με τα αντίστοιχα αναλυτικά. Τέλος, γίνεται μία ανακεφαλαίωση της διδακτορικής διατριβής και διατυπώνονται προτάσεις για μελλοντική έρευνα

    BEM Solutions of Frequency Domain Gradient Elastodynamic 3-D Porblems

    No full text
    A boundary element methodology is presented for the frequency domain elastodynamic analysis of three-dimensional solids characterized by a linear elastic material behavior coupled with microstructural effects taken into account with the aid of the simple gradient elastic theory of Aifantis. A variational statement is established to determine all possible classical and non-classical (due to gradient terms) boundary conditions of the general boundary value problem. The gradient frequency domain elastodynamic fundamental solution is explicitly derived and used to construct the boundary integral representation of the solution with the aid of a reciprocal integral identity. In addition to a boundary integral representation for the displacement, a boundary integral representation for its normal derivative is also necessary for the complete formulation of a well posed problem. All the kernels in the integral equations are explicitly provided. Surface quadratic quadrilateral boundary elements are employed and the discretization is restricted only to the boundary. The solution procedure is described in detail. A numerical example serves to illustrate the method and demonstrate its accuracy. The present version of the method does not provide explicit expressions for the computation of interior stresses

    Structural analysis of gradient elastic components

    Get PDF
    The present study investigates the size effects in the problems of cantilever beam bending and cracked bar tension within the gradient elasticity framework. Analytical solutions for metrics that characterize both the normalized stiffness and toughness are derived. It is found that the gradient elastic beam exhibits a significantly stiffer but also more brittle response, while the gradient cracked bar exhibits considerable toughening. These results compare well with respective finite element computations. (c) 2006 Elsevier Ltd. All rights reserved

    A reciprocity theorem in linear gradient elasticity and the corresponding Saint-Venant principle

    Get PDF
    In many practical applications of nanotechnology and in microelectromechanical devices, typical structural components are in the form of beams, plates, shells and membranes. When the scale of such components is very small, the material microstructural lengths become important and strain gradient elasticity can provide useful material modelling. In addition, small scale beams and bars can be used as test specimens for measuring the lengths that enter the constitutive equations of gradient elasticity. It is then useful to be able to apply approximate solutions for the extension, shear and flexure of slender bodies. Such approach requires the existence of some form of the Saint-Venant principle. The present work presents a statement of the Saint-Venant principle in the context of linear strain gradient elasticity. A reciprocity theorem analogous to Betti's theorem in classic elasticity is provided first, together with necessary restrictions on the constitutive equations and the body forces. It is shown that the order of magnitude of displacements are in accord with the Sternberg's statement of the Saint-Venant principle. The cases of stretching, shearing and bending of a beam were examined in detail, using two-dimensional finite elements. The numerical examples confirmed the theoretical results. (c) 2005 Elsevier Ltd. All rights reserved
    corecore