11 research outputs found
Genomic profiling in rare kidney disease
Rare diseases (RD), generally defined by an incidence of less than 1:2000, affect about 3-6% of the population. To date, over 600 different genetic kidney diseases have been identified. Most of them with the exception of autosomal dominant polycystic kidney disease (ADPKD) are rare to ultrarare disorders. Due to their rarity and often genetic heterogeneity, analysis is difficult and diagnosis is frequently delayed. Clinically, (rare) kidney diseases (RKD) are mainly divided into the following categories: Congenital or developmental kidney and urogenital tract malformations, electrolytes or metabolic disorder, glomerular disease, secondary renal, hereditary renal cancer syndromes, or tubulointerstitial kidney disease. Steroid-resistant nephrotic syndrome (SRNS) and focal segmental glomerulosclerosis (FSGS), are leading causes of end-stage renal disease (ESRD) in children, adolescents, and adults. Although several SRNS genes could be identified mostly in younger children, the genetic basis of SRNS/FSGS in adolescents and adults is far from being completely understood. Reliable discrimination of genetic versus non-genetic forms is an imperative as the identification of monogenic rare kidney disease has numerous implications in a precision medicine setting. Currently, the predominant application of short-read based sequencing techniques results in preferential detection of point mutations and small-sized deletions/insertions while larger structural aberrations (large deletions/insertions), gene rearrangements, and mutations in homologous or repetitive regions frequently escape detection. This project combines short-read based high throughput next-generation sequencing (GPS/WES/WGS) with unparalleled structural variant analyses to overcome previous limitations in genetic analyses. Clinically relevant examples, that such structural variants (SV) are important in rare kidney diseases, are complement activation gene cluster (RCA; chromosome1q32) in atypical haemolytic uremic syndrome (aHUS) as well as the deletion of the chloride channel ClC-Kb associated with Bartter syndrome type 3. The major goal of this project is to unravel the genetic basis of genetic forms of RKD like SRNS/FSGS, aHUS, and tubulopathies and to define a pipeline for the molecular genetic analyses of rare kidney diseases as a best-practice clinical routine at the University Hospital of Cologne. Specifically, my aim was to perform profound genome analyses using biosamples from a cohort of paediatric and adult SRNS/FSGS patients, that have been collected over the last years and integrate this with already existing genetic data. By a comprehensive genomic approach, we aim to improve the diagnostics of chronic kidney disease, enhance our
IV
understanding of the underlying pathomechanisms, and contribute to practice-changing discoveries by precision diagnostics, that allow individualized therapies
Long-read sequencing identifies a common transposition haplotype predisposing for CLCNKB deletions
BACKGROUND: Long-read sequencing is increasingly used to uncover structural variants in the human genome, both functionally neutral and deleterious. Structural variants occur more frequently in regions with a high homology or repetitive segments, and one rearrangement may predispose to additional events. Bartter syndrome type 3 (BS 3) is a monogenic tubulopathy caused by deleterious variants in the chloride channel gene CLCNKB, a high proportion of these being large gene deletions. Multiplex ligation-dependent probe amplification, the current diagnostic gold standard for this type of mutation, will indicate a simple homozygous gene deletion in biallelic deletion carriers. However, since the phenotypic spectrum of BS 3 is broad even among biallelic deletion carriers, we undertook a more detailed analysis of precise breakpoint regions and genomic structure. METHODS: Structural variants in 32 BS 3 patients from 29 families and one BS4b patient with CLCNKB deletions were investigated using long-read and synthetic long-read sequencing, as well as targeted long-read sequencing approaches. RESULTS: We report a ~3 kb duplication of 3'-UTR CLCNKB material transposed to the corresponding locus of the neighbouring CLCNKA gene, also found on ~50 % of alleles in healthy control individuals. This previously unknown common haplotype is significantly enriched in our cohort of patients with CLCNKB deletions (45 of 51 alleles with haplotype information, 2.2 kb and 3.0 kb transposition taken together, p=9.16×10-9). Breakpoint coordinates for the CLCNKB deletion were identifiable in 28 patients, with three being compound heterozygous. In total, eight different alleles were found, one of them a complex rearrangement with three breakpoint regions. Two patients had different CLCNKA/CLCNKB hybrid genes encoding a predicted CLCNKA/CLCNKB hybrid protein with likely residual function. CONCLUSIONS: The presence of multiple different deletion alleles in our cohort suggests that large CLCNKB gene deletions originated from many independently recurring genomic events clustered in a few hot spots. The uncovered associated sequence transposition haplotype apparently predisposes to these additional events. The spectrum of CLCNKB deletion alleles is broader than expected and likely still incomplete, but represents an obvious candidate for future genotype/phenotype association studies. We suggest a sensitive and cost-efficient approach, consisting of indirect sequence capture and long-read sequencing, to analyse disease-relevant structural variant hotspots in general
MTBP phosphorylation controls DNA replication origin firing
Faithful genome duplication requires regulation of origin firing to determine loci, timing and efficiency of replisome generation. Established kinase targets for eukaryotic origin firing regulation are the Mcm2-7 helicase, Sld3/Treslin/TICRR and Sld2/RecQL4. We report that metazoan Sld7, MTBP (Mdm2 binding protein), is targeted by at least three kinase pathways. MTBP was phosphorylated at CDK consensus sites by cell cycle cyclin-dependent kinases (CDK) and Cdk8/19-cyclin C. Phospho-mimetic MTBP CDK site mutants, but not non-phosphorylatable mutants, promoted origin firing in human cells. MTBP was also phosphorylated at DNA damage checkpoint kinase consensus sites. Phospho-mimetic mutations at these sites inhibited MTBP's origin firing capability. Whilst expressing a non-phospho MTBP mutant was insufficient to relieve the suppression of origin firing upon DNA damage, the mutant induced a genome-wide increase of origin firing in unperturbed cells. Our work establishes MTBP as a regulation platform of metazoan origin firing
Long-term data on two sisters with C3GN due to an identical, homozygous CFH mutation and autoantibodies
C3 glomendonephritis (C3GN) is a rare but severe form of kidney disease caused by fluid-phase dysregulation of the alternative complement pathway. Causative mutations in complement regulating genes as well as auto-immune forms of C3GN have been described. However, therapy and prognosis in individual patients remain a matter of debate and long-term data are scarce. This also applies for the management of transplant patients as disease recurrence post-transplant is frequent. Here, we depict the clinical courses of two sisters with the unique combination of an identical, homozygous mutation in the complement factor H (CFH) gene as well as autoantibodies with a clinical follow-up of more than 20 years. Interestingly, the sisters presented with discordant clinical courses of C3GN with normal kidney function in one (patient A) and end-stage kidney disease in the other sister (patient B). In patient B, eculizumab was administered immediately prior to and in the course after kidney transplantation, with the result of a stable graft function without any signs of disease recurrence. Comprehensive genetic work-up revealed no further disease-causing mutation in both sisters. Intriguingly, the auto-antibody profile substantially differed in both sisters: autoantibodies in patient A reduced the C3b deposition, while the antibodies identified in patient B increased complement activation and deposition of split products. This study underlines the concept of a personalized-medicine approach in complement-associated diseases after thorough evaluation of the individual risk profile in each patient
Expanding the Spectrum of FAT1 Nephropathies by Novel Mutations That Affect Hippo Signaling
Introduction: Disease-causing mutations in the protocadherin FAT1 have been recently described both in patients with a glomerulotubular nephropathy and in patients with a syndromic nephropathy. Methods: We identified 4 patients with FAT1-associated disease, performed clinical and genetic charac-terization, and compared our findings to the previously published patients. Patient-derived primary urinary epithelial cells were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblotting to identify possible alterations in Hippo signaling. Results: Here we expand the spectrum of FAT1-associated disease with the identification of novel FAT1 mutations in 4 patients from 3 families (homozygous truncating variants in 3, compound heterozygous missense variants in 1 patient). All patients show an ophthalmologic phenotype together with heteroge-neous renal phenotypes ranging from normal renal function to early-onset end-stage kidney failure. Molecular analysis of primary urine-derived urinary renal epithelial cells revealed alterations in the Hippo signaling cascade with a decreased phosphorylation of both the core kinase MST and the downstream effector YAP. Consistently, we found a transcriptional upregulation of bona fide YAP target genes. Conclusion: A comprehensive review of the here identified patients and those previously published indicates a highly diverse phenotype in patients with missense mutations but a more uniform and better recognizable phenotype in the patients with truncating mutations. Altered Hippo signaling and de-repressed YAP activity might be novel contributing factors to the pathomechanism in FAT1-associated renal disease
Long-read sequencing identifies a common transposition haplotype predisposing for CLCNKB deletions
Abstract Background Long-read sequencing is increasingly used to uncover structural variants in the human genome, both functionally neutral and deleterious. Structural variants occur more frequently in regions with a high homology or repetitive segments, and one rearrangement may predispose to additional events. Bartter syndrome type 3 (BS 3) is a monogenic tubulopathy caused by deleterious variants in the chloride channel gene CLCNKB, a high proportion of these being large gene deletions. Multiplex ligation-dependent probe amplification, the current diagnostic gold standard for this type of mutation, will indicate a simple homozygous gene deletion in biallelic deletion carriers. However, since the phenotypic spectrum of BS 3 is broad even among biallelic deletion carriers, we undertook a more detailed analysis of precise breakpoint regions and genomic structure. Methods Structural variants in 32 BS 3 patients from 29 families and one BS4b patient with CLCNKB deletions were investigated using long-read and synthetic long-read sequencing, as well as targeted long-read sequencing approaches. Results We report a ~3 kb duplication of 3′-UTR CLCNKB material transposed to the corresponding locus of the neighbouring CLCNKA gene, also found on ~50 % of alleles in healthy control individuals. This previously unknown common haplotype is significantly enriched in our cohort of patients with CLCNKB deletions (45 of 51 alleles with haplotype information, 2.2 kb and 3.0 kb transposition taken together, p=9.16×10−9). Breakpoint coordinates for the CLCNKB deletion were identifiable in 28 patients, with three being compound heterozygous. In total, eight different alleles were found, one of them a complex rearrangement with three breakpoint regions. Two patients had different CLCNKA/CLCNKB hybrid genes encoding a predicted CLCNKA/CLCNKB hybrid protein with likely residual function. Conclusions The presence of multiple different deletion alleles in our cohort suggests that large CLCNKB gene deletions originated from many independently recurring genomic events clustered in a few hot spots. The uncovered associated sequence transposition haplotype apparently predisposes to these additional events. The spectrum of CLCNKB deletion alleles is broader than expected and likely still incomplete, but represents an obvious candidate for future genotype/phenotype association studies. We suggest a sensitive and cost-efficient approach, consisting of indirect sequence capture and long-read sequencing, to analyse disease-relevant structural variant hotspots in general
Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study
Background: While the leading symptoms during coronavirus disease 2019 (COVID-19) are acute and the majority of patients fully recover, a significant fraction of patients now increasingly experience long-term health consequences. However, most data available focus on health-related events after severe infection and hospitalisation. We present a longitudinal, prospective analysis of health consequences in patients who initially presented with no or minor symptoms of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Hence, we focus on mild COVID-19 in non-hospitalised patients. Methods: 958 Patients with confirmed SARS-CoV-2 infection were observed from April 6th to December 2nd 2020 for long-term symptoms and SARS-CoV-2 antibodies. We identified anosmia, ageusia, fatigue or shortness of breath as most common, persisting symptoms at month 4 and 7 and summarised presence of such long-term health consequences as post-COVID syndrome (PCS). Predictors of long-term symptoms were assessed using an uni- and multivariable logistic regression model. Findings: We observed 442 and 353 patients over four and seven months after symptom onset, respectively. Four months post SARS-CoV-2 infection, 8.6% (38/442) of patients presented with shortness of breath, 12.4% (55/442) with anosmia, 11.1% (49/442) with ageusia and 9.7% (43/442) with fatigue. At least one of these characteristic symptoms was present in 27.8% (123/442) and 34.8% (123/353) at month 4 and 7 post-infection, respectively. A lower baseline level of SARS-CoV-2 IgG, anosmia and diarrhoea during acute COVID-19 were associated with higher risk to develop long-term symptoms. Interpretation: The on-going presence of either shortness of breath, anosmia, ageusia or fatigue as long-lasting symptoms even in non-hospitalised patients was observed at four and seven months post-infection and summarised as post-COVID syndrome (PCS). The continued assessment of patients with PCS will become a major task to define and mitigate the socioeconomic and medical long-term effects of COVID-19. (C) 2021 The Authors. Published by Elsevier Ltd
Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study
Background: While the leading symptoms during coronavirus disease 2019 (COVID-19) are acute and the majority of patients fully recover, a significant fraction of patients now increasingly experience long-term health consequences. However, most data available focus on health-related events after severe infection and hospitalisation. We present a longitudinal, prospective analysis of health consequences in patients who initially presented with no or minor symptoms of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Hence, we focus on mild COVID-19 in non-hospitalised patients. Methods: 958 Patients with confirmed SARS-CoV-2 infection were observed from April 6th to December 2nd 2020 for long-term symptoms and SARS-CoV-2 antibodies. We identified anosmia, ageusia, fatigue or shortness of breath as most common, persisting symptoms at month 4 and 7 and summarised presence of such long-term health consequences as post-COVID syndrome (PCS). Predictors of long-term symptoms were assessed using an uni- and multivariable logistic regression model. Findings: We observed 442 and 353 patients over four and seven months after symptom onset, respectively. Four months post SARS-CoV-2 infection, 8•6% (38/442) of patients presented with shortness of breath, 12•4% (55/442) with anosmia, 11•1% (49/442) with ageusia and 9•7% (43/442) with fatigue. At least one of these characteristic symptoms was present in 27•8% (123/442) and 34•8% (123/353) at month 4 and 7 post-infection, respectively. A lower baseline level of SARS-CoV-2 IgG, anosmia and diarrhoea during acute COVID-19 were associated with higher risk to develop long-term symptoms. Interpretation: The on-going presence of either shortness of breath, anosmia, ageusia or fatigue as long-lasting symptoms even in non-hospitalised patients was observed at four and seven months post-infection and summarised as post-COVID syndrome (PCS). The continued assessment of patients with PCS will become a major task to define and mitigate the socioeconomic and medical long-term effects of COVID-19. Funding: COVIM:“NaFoUniMedCovid19”(FKZ: 01KX2021
Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3
International audienceAbstract Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements
Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3
Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements