237 research outputs found

    Losers of globalization, losers in representation? The impact of education on unequal policy representation in Europe

    Get PDF
    The article focuses on the impact of education on policy representation. It examines degrees of congruence between political elites and citizens on policy preferences across different policy issues, trying to discern whether there is a representation gap between the so-called “winners” and “losers” of globalization in Europe as captured via the proxy measure of educational attainment. Additionally, we examine whether this representation gap, as well as overall levels of congruence, are affected by contextual factors related to the economy and the ideological orientation of governments. Using data from the 2014 European Election Studies and the 2014 Chapel Hill Expert Survey, our findings largely confirm the existence of a representation gap along educational lines. Contextual factors related to the economy present weak or no direct and moderating effects whereas ideologically left-leaning governments accentuate, for the most part, the representation gap between individuals of low and high educational attainment.info:eu-repo/semantics/publishedVersio

    Expression of the Tpl2/Cot oncogene in human T-cell neoplasias

    Get PDF
    BACKGROUND: Tpl2/Cot oncogene has been identified in murine T-cell lymphomas as a target of MoMuLV insertion. Animal and tissue culture studies have shown that Tpl2/Cot is involved in interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) production by T-cells contributing to T-cell proliferation. In the present report we examined a series of 12 adult patients with various T-cell malignancies, all with predominant leukemic expression in the periphery, for the expression of Tpl2/Cot oncogene in order to determine a possible involvement of Tpl2/Cot in the pathogenesis of these neoplasms. RESULTS: Our results showed that Tpl2/Cot was overexpressed in all four patients with Large Granular Lymphocyte proliferative disorders (LGL-PDs) but in none of the remaining eight patients with other T-cell neoplasias. Interestingly, three of the LGL-PD patients displayed neutropenia, one in association with sarcoidosis. Serum TNF-α levels were increased in all Tpl2/Cot overexpressing patients while serum IL-2 was undetectable in all subjects studied. Genomic DNA analysis revealed no DNA amplification at the Tpl2/Cot locus in any of the samples analyzed. CONCLUSIONS: We conclude that Tpl2/Cot, a gene extensively studied in animal and tissue culture T-cell models may be also involved in the development of human LGL-PD and may have a role in the pathogenesis of immune manifestations associated with these diseases. This is the first report implicating Tpl2/Cot in human T-cell neoplasias and provides a novel molecular event in the development of LGL-PDs

    Post Translational Modulation of ÎČ-Amyloid Precursor Protein Trafficking to the Cell Surface Alters Neuronal Iron Homeostasis

    Get PDF
    Cell surface ÎČ-Amyloid precursor protein (APP) is known to have a functional role in iron homeostasis through stabilising the iron export protein ferroportin (FPN). Mechanistic evidence of this role has previously only been provided through transcriptional or translational depletion of total APP levels. However, numerous post-translational modifications of APP are reported to regulate the location and trafficking of this protein to the cell surface. Stable overexpressing cell lines were generated that overexpressed APP with disrupted N-glycosylation (APPN467K and APPN496K) or ectodomain phosphorylation (APPS206A); sites selected for their proximity to the FPN binding site on the E2 domain of APP. We hypothesise that impaired N-glycosylation or phosphorylation of APP disrupts the functional location on the cell surface or binding to FPN to consequentially alter intracellular iron levels through impaired cell surface FPN stability. Outcomes confirm that these post-translational modifications are essential for the correct location of APP on the cell surface and highlight a novel mechanism by which the cell can modulate iron homeostasis. Further interrogation of other post-translational processes to APP is warranted in order to fully understand how each modification plays a role on regulating intracellular iron levels in health and disease

    ID1 and ID3 Regulate the Self-Renewal Capacity of Human Colon Cancer-Initiating Cells through p21

    Get PDF
    SummaryThere is increasing evidence that some cancers are hierarchically organized, sustained by a relatively rare population of cancer-initiating cells (C-ICs). Although the capacity to initiate tumors upon serial transplantation is a hallmark of all C-ICs, little is known about the genes that control this process. Here, we establish that ID1 and ID3 function together to govern colon cancer-initiating cell (CC-IC) self-renewal through cell-cycle restriction driven by the cell-cycle inhibitor p21. Regulation of p21 by ID1 and ID3 is a central mechanism preventing the accumulation of excess DNA damage and subsequent functional exhaustion of CC-ICs. Additionally, silencing of ID1 and ID3 increases sensitivity of CC-ICs to the chemotherapeutic agent oxaliplatin, linking tumor initiation function with chemotherapy resistance

    SARS-CoV-2/ACE2 Interaction Suppresses IRAK-M Expression and Promotes Pro-Inflammatory Cytokine Production in Macrophages

    Get PDF
    The major cause of death in SARS-CoV-2 infected patients is due to de-regulation of the innate immune system and development of cytokine storm. SARS-CoV-2 infects multiple cell types in the lung, including macrophages, by engagement of its spike (S) protein on angiotensin converting enzyme 2 (ACE2) receptor. ACE2 receptor initiates signals in macrophages that modulate their activation, including production of cytokines and chemokines. IL-1R-associated kinase (IRAK)-M is a central regulator of inflammatory responses regulating the magnitude of TLR responsiveness. Aim of the work was to investigate whether SARS-CoV-2 S protein-initiated signals modulate pro-inflammatory cytokine production in macrophages. For this purpose, we treated PMA-differentiated THP-1 human macrophages with SARS-CoV-2 S protein and measured the induction of inflammatory mediators including IL6, TNFα, IL8, CXCL5, and MIP1a. The results showed that SARS-CoV-2 S protein induced IL6, MIP1a and TNFα mRNA expression, while it had no effect on IL8 and CXCL5 mRNA levels. We further examined whether SARS-CoV-2 S protein altered the responsiveness of macrophages to TLR signals. Treatment of LPS-activated macrophages with SARS-CoV-2 S protein augmented IL6 and MIP1a mRNA, an effect that was evident at the protein level only for IL6. Similarly, treatment of PAM3csk4 stimulated macrophages with SARS-CoV-2 S protein resulted in increased mRNA of IL6, while TNFα and MIP1a were unaffected. The results were confirmed in primary human peripheral monocytic cells (PBMCs) and isolated CD14+ monocytes. Macrophage responsiveness to TLR ligands is regulated by IRAK-M, an inactive IRAK kinase isoform. Indeed, we found that SARS-CoV-2 S protein suppressed IRAK-M mRNA and protein expression both in THP1 macrophages and primary human PBMCs and CD14+ monocytes. Engagement of SARS-CoV-2 S protein with ACE2 results in internalization of ACE2 and suppression of its activity. Activation of ACE2 has been previously shown to induce anti-inflammatory responses in macrophages. Treatment of macrophages with the ACE2 activator DIZE suppressed the pro-inflammatory action of SARS-CoV-2. Our results demonstrated that SARS-CoV-2/ACE2 interaction rendered macrophages hyper-responsive to TLR signals, suppressed IRAK-M and promoted pro-inflammatory cytokine expression. Thus, activation of ACE2 may be a potential anti-inflammatory therapeutic strategy to eliminate the development of cytokine storm observed in COVID-19 patients

    Brief Report: The Use of WAIS-III in Adults with HFA and Asperger Syndrome

    Get PDF
    The WAIS III was administered to 16 adults with high functioning autism (HFA) and 27 adults with Asperger syndrome. Differences between Verbal Intelligence (VIQ) and Performance Intelligence (PIQ) were not found. Processing Speed problems in people with HFA appeared. At the subtest level, the Asperger syndrome group performed weak on Digit Span. Comprehension and Block Design were relative strengths. In the HFA group, performance on Digit-Symbol Coding and Symbol Search was relatively poor. Strengths were found on Information and Matrix Reasoning. The results suggest that the VIQ-PIQ difference cannot distinguish between HFA and Asperger syndrome. WAIS III Factor Scale and Subtest patterning provides a more valid indicator

    Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

    Get PDF
    Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to predict kinase substrate preferences from the primary structure, hampering the understanding of kinase function in physiology and prompting the development of technologies that allow easy assessment of kinase substrate consensus sequences. Hence, we decided to explore the usefulness of phosphorylation of peptide arrays comprising of 1176 different peptide substrates with recombinant kinases for determining kinase substrate preferences, based on the contribution of individual amino acids to total array phosphorylation. Employing this technology, we were able to determine the consensus peptide sequences for substrates of both c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8, two highly homologous kinases with distinct signalling roles in cellular physiology. The results show that although consensus sequences for these two kinases identified through our analysis share important chemical similarities, there is still some sequence specificity that could explain the different biological action of the two enzymes. Thus peptide arrays are a useful instrument for deducing substrate consensus sequences and highly homologous kinases can differ in their requirement for phosphorylation events

    The lectin concanavalin-A signals MT1-MMP catalytic independent induction of COX-2 through an IKKÎł/NF-ÎșB-dependent pathway

    Get PDF
    The lectin from Canavalia ensiformis (Concanavalin-A, ConA), one of the most abundant lectins known, enables one to mimic biological lectin/carbohydrate interactions that regulate extracellular matrix protein recognition. As such, ConA is known to induce membrane type-1 matrix metalloproteinase (MT1-MMP) which expression is increased in brain cancer. Given that MT1-MMP correlated to high expression of cyclooxygenase (COX)-2 in gliomas with increasing histological grade, we specifically assessed the early proinflammatory cellular signaling processes triggered by ConA in the regulation of COX-2. We found that treatment with ConA or direct overexpression of a recombinant MT1-MMP resulted in the induction of COX-2 expression. This increase in COX-2 was correlated with a concomitant decrease in phosphorylated AKT suggestive of cell death induction, and was independent of MT1-MMP’s catalytic function. ConA- and MT1-MMP-mediated intracellular signaling of COX-2 was also confirmed in wild-type and in Nuclear Factor-kappaB (NF-ÎșB) p65−/− mutant mouse embryonic fibroblasts (MEF), but was abrogated in NF-ÎșB1 (p50)−/− and in I kappaB kinase (IKK) γ−/− mutant MEF cells. Collectively, our results highlight an IKK/NF-ÎșB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of COX-2. That signaling pathway could account for the inflammatory balance responsible for the therapy resistance phenotype of glioblastoma cells, and prompts for the design of new therapeutic strategies that target cell surface carbohydrate structures and MT1-MMP-mediated signaling. Concise summary Concanavalin-A (ConA) mimics biological lectin/carbohydrate interactions that regulate the proinflammatory phenotype of cancer cells through yet undefined signaling. Here we highlight an IKK/NF-ÎșB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of cyclooxygenase-2, and that could be responsible for the therapy resistance phenotype of glioblastoma cells
    • 

    corecore