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SUMMARY
There is increasing evidence that some cancers are hierarchically organized, sustained by a relatively rare
population of cancer-initiating cells (C-ICs). Although the capacity to initiate tumors upon serial transplanta-
tion is a hallmark of all C-ICs, little is known about the genes that control this process. Here, we establish that
ID1 and ID3 function together to govern colon cancer-initiating cell (CC-IC) self-renewal through cell-cycle
restriction driven by the cell-cycle inhibitor p21. Regulation of p21 by ID1 and ID3 is a central mechanism
preventing the accumulation of excess DNA damage and subsequent functional exhaustion of CC-ICs. Addi-
tionally, silencing of ID1 and ID3 increases sensitivity of CC-ICs to the chemotherapeutic agent oxaliplatin,
linking tumor initiation function with chemotherapy resistance.
INTRODUCTION

There is increasing experimental evidence from cell fractionation

experiments that many, but perhaps not all, tumors are orga-

nized as a cellular hierarchy sustained by a so-called cancer-

initiating cell (C-IC) or cancer stem cell (CSC) (Al-Hajj and Clarke,

2004; Dick, 2008; O’Brien et al., 2009). Several attributes distin-

guish C-ICs from the remaining cells of a tumor, including ability

to initiate cancer growth in xenotransplantation assays, restora-

tion of the tumor hierarchy by generating non-C-ICs, and

capacity for long-term self-renewal (Dick, 2003). It is becoming

evident that the acquisition of dysregulated self-renewal mecha-

nisms represents a key step in the generation of C-ICs (Morrison

and Kimble, 2006; He et al., 2009). The strongest evidence for

C-ICs has come from clonal serial xenotransplantation assays

and lentiviral-tracking studies carried out in leukemia by Bonnet

and Dick (1997) and Hope et al. (2004). Experimental data are

now accumulating that several solid tumors, including breast
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total colon cancer cell population and can be prospectively

isolated based on the expression of specific cell surface (i.e.,

CD133 [O’Brien et al., 2007; Ricci-Vitiani et al., 2007], CD44

[Dalerba et al., 2007], CD166 [Dalerba et al., 2007]) or functional

(aldehyde dehydrogenase-1; Dylla et al., 2008; Huang et al.,

2009) markers. Evidence is also emerging that the C-ICs from
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to chemotherapy and radiation, including expression of drug

efflux pumps, altered DNA damage response, or cellular quies-

cence (Bao et al., 2006; Todaro et al., 2008; Hermann et al.,

2007; Schatton et al., 2008; Viale et al., 2009). Collectively, little

is known of the molecular regulation of solid tumor C-ICs and

whether intrinsic stem cell properties are directly linked to

survival mechanisms and therapeutic resistance.
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As a first step to uncover specific factors that govern the

maintenance of CC-ICs, we focused on genes that have been

implicated in self-renewal properties of somatic or embryonic

stem cells, narrowed the list to those that were dysregulated in

cancer, and finally to those implicated in human colon cancer

specifically. One family of proteins that satisfies these criteria

are the inhibitor of DNA binding proteins (IDs), a family of homol-

ogous helix-loop-helix (HLH) transcriptional regulatory factors

(Gray et al., 2008) (ID1–ID4) with recognized roles in develop-

ment, senescence, differentiation, angiogenesis, and migration

(Fong et al., 2004). The ability of ID proteins to drive self-renewal

is well established in embryonic stem cells, where the upregula-

tion of IDs by bone morphogenic protein 4 (BMP4) is required to

maintain self-renewal and pluripotency (Hollnagel et al., 1999;

Ruzinova and Benezra, 2003). Studies in a murine model of

hematopoiesis revealed that Id1�/� whole-bone marrow

displayed impaired self-renewal capacity relative to wild-type

controls (Perry et al., 2007). Similar results were observed in

murine cortical neural stem cells where overexpression of Id1

increased self-renewal capacity (Nam and Benezra, 2009).

Evidence suggesting that IDs play a role in cancer comes from

studies demonstrating increased expression in a variety of solid

tumors, including pancreatic (Kleeff et al., 1998), cervical

(Schindl et al., 2001), ovarian (Schindl et al., 2003) prostate

(Ouyang et al., 2002), breast (Lin et al., 2000; Fong et al.,

2003), and colon (Meteoglu et al., 2008; Gray et al., 2008).

ID upregulation correlates with both poor prognosis and chemo-

resistance (Cheung et al., 2004; Hu et al., 2009; Li et al., 2007).

Furthermore, studies from Gupta et al. using murine models of

breast cancer demonstrated a role for Id1/Id3 in the initiation

of metastases, a process that may be closely related to the

concept of C-ICs (Gupta et al., 2007). Considering the overall

importance of IDs in cancer biology and their role in embryonic

and somatic stem cell self-renewal, they represent prime candi-

dates to evaluate in CC-ICs.

In some systems, ID1 functions to maintain self-renewal

through repressive effects on expression of the cell-cycle inhib-

itor, p21/cip1/waf1 (p21) (Ciarrocchi et al., 2007; Jankovic et al.,

2007). However, p21 has also been linked to maintenance of

self-renewal capacity in leukemic and normal hematopoietic

stem cells, indicating that cellular context can impact on func-

tional properties of these regulators (Cheng et al., 2000; Viale

et al., 2009). Although, to our knowledge, there are no reports

on a role for p21 in CC-IC self-renewal, p21 has a well-estab-

lished role in protecting colon cancer cells against a variety of

stress stimuli, including exposure to radiation and chemotherapy

(Mahyar-Roemer and Roemer, 2001; Bene andChambers, 2009;

Gorospe et al., 1996; Sharma et al., 2005; Tian et al., 2000).

These studies point to the plausibility that therapy resistance

may be linked to tumor initiation and maintenance mechanisms

and that pathways driving self-renewal may also function to

protect CC-ICs when exposed to environmental stress.

Mechanistic studies on properties governing tumor initiation

require large numbers of CC-ICs to carry out functional genomic

experiments aimed at identifying the key players in CC-IC func-

tion. However, this has proved difficult because CC-ICs are

typically rare in primary human cancers, and culture systems

that permit genetic studies as well as the production of large

numbers of CC-ICs are not well established. Here, we de-
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veloped a robust culture system that enabled the expansion

and genetic manipulation of CC-ICs. Utilizing this system, we

interrogated the role of ID1 and ID3 in driving CC-IC self-renewal

capacity, aswell as their role in determining response to oxalipla-

tin, a commonly used chemotherapeutic agent in colon cancer

(Alberts and Wagman, 2008).

RESULTS

Enrichment of CC-ICs in Primary Human Colon Cancer
Cultures
In colon cancer the C-IC fraction is typically small, rendering

these cells difficult to identify and making molecular studies

aimed atmanipulating tumor initiation programs very challenging

(O’Brien et al., 2007). We characterized a commercially available

cell line, LS174T, and determined that xenografts from this cell

line can be initiated with a high frequency (Figure 1A; see Table

S2 available online). Furthermore, xenografts derived from

LS174T injections were hierarchically organized based on

CD44 expression (Figure 1D; Table S3). To determine if the

culture conditions could be applied to primary samples, three

colon cancers were obtained at the time of surgical resection

and established as sphere cultures in serum-free media (Kreso

and O’Brien, 2008). There was approximately a 200-fold

increase in CC-IC activity in the sphere-cultured cells as

compared to in vivo-limiting dilution assay (LDA) results using

xenograft cells derived from the same tumor (Figure 1A; Tables

S1 and S2).

To establish that the primary cultures retained their ability

to reestablish a cellular hierarchy, they were transplanted into

mice, and expression of known CC-IC surface markers, CD133

and CD44, was assessed. Sample 3 did not express either

marker but contained CC-ICs based on in vivo serial passage

LDA (Figures 1A–1C). For sample 2, CD44 and CD133 expres-

sion during in vitro culture closely resembled the expression

from xenograft-derived cells (Figures 1B and 1C). Sample 1

displayed yet a different pattern where CD133 was expressed

on a subset of cells in vitro, whereas CD44 was expressed on

most cells. However, when sample 1 cells were obtained from

xenografts, no CD44 expression was identified, and the CD133

subset remained relatively stable (Figures 1B and 1C). Similar

results were observed with LS174T where in vitro culture

resulted in expression of CD44 on the majority of cells (Fig-

ure 1B), whereas only approximately 50% of xenograft-derived

cells expressed CD44 (Figure 1C). To ensure that there was no

contamination, each colon cancer sample was checked for

nonmalignant cells, including endothelial, hematopoietic, and

murine cells (Figure S1).

To determine whether the cell surface phenotype correlated

with CC-IC function, CD133+ and CD44+ subsets were tested

using both in vitro and in vivo LDAs and found to be enriched

for CC-IC activity (Figure 1D; Table S3), with two exceptions.

CD44 expression in LS174T and sample 1 did not enrich from

in vitro culture, indicating that CD44 is an unreliable marker of

CC-IC activity for these samples under in vitro conditions

(Figures 1B and 1D). In contrast, serial transplantation of

CD44+ and CD44� LS174T xenograft-derived cells demon-

strated that CD44+ cells possessed increased CC-IC capacity

as compared to the CD44� fraction (Figure 1D; Table S3).



Sample CC-IC frequency of 

xenograft cells in vivo

CC-IC frequency of 

sphere cells in vivo

SFU frequency 

in vitro

CFU frequncy in 

vitro

1 1 in 11498 (18301-7224) 1 in 54 (93-31) 1 in 20 (26-16) 1 in 1.6 (2.1-1.3)

2 1 in 32162 (46614-22191) 1 in 118 (218-64) 1 in 22 (28-17) 1 in 2.4 (2.8-1.9)

3 1 in 57636 (83861-39612) 1 in 580 (1067-317) 1 in 39 (49-31) 1 in 2.7 (3.3-2.1)

LS174T 1 in 111 (156-76) 1 in 40 (72-26) 1 in 2 (2.6-1.6)

A

B

C

D

Sample 1                             Sample 2                            Sample  3                            LS174T

Sphere LDA Xenograft LDA

Colon cancer 

sample 

Cell subset 

injected

CC-IC frequency 1 in x CC-IC frequency 1 in x

Lower Estimate Upper Lower Estimate Upper

Sample 2

CD133+ 97 62 39 247 121 60

CD133- 22,439 13,295 7,878 119,974 38,826 12,565

Sample 2

CD44+ 173 86 43 674 355 187

CD44- 7,448 3959 2,105 128,409 40,764 12,941

LS174T

CD44+ 358 190 100

CD44- 14,866 8,748 5,148

in
v
it
ro

in
 v

iv
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Figure 1. In Vitro Expansion and Xenograft Generation of Human Colon Cancer Cells

(A) Comparison of in vivo xenograft formation with in vitro sphere and colony formation at limiting dilution is shown. All data are represented as the frequency of

CC-IC, SFU, or CFU; 95% CI is shown in parentheses.

(B) Representative flow cytometric profiles of CD44 and CD133 expression in vitro (n = 5).

(C) Flow cytometric profiles of xenograft-derived cells (n = 5).

(D) Fractionation of CC-IC activity based on CC-ICmarker expression. All data are represented as the CC-IC (95%CI). CC-IC frequency 1 in x (x, number of colon

cancer cells).

See also Figure S1 and Tables S1, S2, S3, S4, and S5.
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Collectively, these findings demonstrate the importance of func-

tionally validating each sample in the context of the system being

studied because a change in phenotypic expression does not

necessarily correlate to function. Thus, by robust functional

criteria we can conclude that the culture conditions we devel-

oped resulted in highly enriched CC-ICs that retain their capacity

to generate a tumor hierarchy. Recently, a more immune-

deficient mouse strain has become available, NOD/SCID g

(NSG), that results in a dramatic enhancement in the detection

of C-ICs in some tumors, such as melanoma (Quintana et al.,

2008). We observed similar CC-IC frequencies in NOD/SCID

versus NSG recipients (Table S4), suggesting that the wide vari-

ation observed in melanoma does not necessarily apply to all

types of cancer, including the colon cancer samples employed

in this study.

Comparison of the Frequency of Cells Capable of In Vitro
Sphere and Colony Formation with CC-IC Activity
The gold standard test for enumerating the frequency of C-ICs

is in vivo serial transplantation of single C-ICs. However,

recently, many groups have commenced utilizing sphere

(serum-free media) or colony-forming (10% serum media)

assays as attractive surrogates (Todaro et al., 2008; Korkaya

et al., 2009). To determine whether these in vitro assays consti-

tute valid surrogates for themeasurement of C-IC capacity, each

culture was subjected to a detailed quantitative analysis to deter-

mine the frequency of colony-forming cells, sphere-forming

cells, and in vivo C-ICs. The frequency of sphere and colony-

forming cells was 6- and 88-fold greater than in vivo CC-IC

frequencies, respectively (Figure 1A). Therefore, it was evident

that the number of colon cancer cells capable of forming

colonies in vitro was significantly greater than those capable of

forming spheres. To determine if colony-forming cells and

sphere-forming cells still possessed CC-IC activity, cells from

each assay were injected into NOD/SCID mice using LDA. Inter-

estingly, the exact opposite was seen when these cells were

injected in vivo: the tumor-initiating capacity was significantly

less in the cells cultured in the colony-forming media versus

the same cells cultured under sphere conditions. For example

when injected in vivo, the LS174T CC-IC frequencies were 1 in

111 in sphere media (Figure 1A) versus 1 in 15,166 in the

colony-forming media containing serum (Table S5). This experi-

ment was repeated with a tumor sample taken at the time of

surgical resection, and similar results were obtained (Table S5).

These results indicate that the sphere assay more closely

reflects the in vivo CC-IC frequencies.

Knockdown of ID1/ID3 Expression Reduces Tumor
Growth In Vivo
Protein expression of ID1 and ID3 was determined for each of

the samples (Figure S2A). To investigate a possible role for

ID1 and ID3 in maintaining the CC-IC fraction, the level of

expression in CC-IC-enriched and non-enriched fractions was

determined by qPCR. There was a trend for ID1 mRNA expres-

sion levels to be higher in the CD133+ and CD44+ fractions, as

compared to the negative counterparts (Figure 2A). ID3 expres-

sion levels were similar in both fractions (Figure 2B). To deter-

mine the functional significance of ID1 and ID3 expression,

we utilized retrovirus-mediated silencing in CC-IC cultures
780 Cancer Cell 21, 777–792, June 12, 2012 ª2012 Elsevier Inc.
using control (PRS), ID1 knockdown (ID1KD), ID3KD, or

combined ID1 and ID3 KD (ID1/ID3KD). To account for potential

off-target effects, two independently designed hairpins for ID1

and ID3 were tested (Figure S2B). The two sets of hairpins

yielded very similar in vitro results, and the set of hairpins we

utilized was previously validated by Gupta et al. (2007). Western

blot analysis demonstrated >50% reduction of ID1 and ID3

protein in ID1/ID3KD cells as compared to control cells, indi-

cating efficient KD. However, both ID1 and ID3 are not

completely eliminated at the protein level; nevertheless, we

will continue to use the nomenclature of ID1/ID3KD to denote

this partial KD situation (Figure 2C). Following transduction

and selection, colon cancer cells were injected subcutaneously

(s.c.) into NOD/SCID mice. The KD of ID1 or ID3 protein expres-

sion individually resulted in partial inhibition of tumor growth.

However, ID1/ID3KD resulted in a profound decrease in the

ability of these cells to form colon cancer xenografts in the

LS174T cells (Figures 2D and 2H). There was a complete loss

of tumor formation in the ID1/ID3KD group for samples 1, 2,

and 3 (Figures 2E–2G).

Because the role of ID1 in vasculogenesis is well established

by Lyden et al. (1999), we investigated whether the drastic differ-

ence in tumor size was due to poor vascularization at the site of

injection. Control and ID1/ID3KD-transduced LS174T cells were

injected into the spleen, a well-vascularized site. A significant

reduction in tumor growth and metastatic burden was observed

(Figures S2E–2H), suggesting that the effect of ID1/ID3KD was

not solely due to effects on vasculogenesis.

ID1/ID3KD Affects Proliferation and Xenograft
Microvessel Formation
To elucidate the mechanism of action of ID1/ID3KD, the xeno-

grafts generated from each experimental group were examined

for microvessel density (MVD), apoptosis, necrosis, and prolifer-

ation.MVDwas significantly decreased by 50% in the ID1/ID3KD

group as compared to control (Figure 3A). This result was

anticipated because previous studies have recognized the

importance of ID1 expression in vasculogenesis both in endo-

thelial and cancer cells (Lyden et al., 1999; Ling et al., 2005;

Swarbrick et al., 2008). There was no significant difference

between the experimental and control groups with respect

to apoptosis, proliferative index, or percent necrosis (Figures

3B–3E). In contrast to the xenograft results, the in vitro prolifera-

tive capacity was 2-fold lower in all three KD groups as

compared to control (Figure 3F). Anothermeasure of proliferative

capacity is sphere diameter, which showed no significant differ-

ence among the three KD groups (Figure S3A). The modest

decrease in proliferation observed in vitro could partially explain

the significantly smaller xenografts in the ID1KD and ID3KD

groups as compared to controls but could not explain the

profound decrease in xenograft growth observed in the

ID1/ID3KD group. Another mechanism known to be affected

by ID proteins is senescence (Swarbrick et al., 2008); however,

no differences in the b-galactosidase senescence marker were

seen between KD and control groups (data not shown).

The IDs have a well-established role in the inhibition of differ-

entiation in a variety of cell types (Fong et al., 2004). To determine

whether ID1/ID3KD was inducing differentiation, the LS174T

control and KD xenografts were stained for known colon cancer



Figure 2. ID1/ID3KD Reduces Tumor Growth

In Vivo

(A and B) qPCR for ID1 (A) and ID3 (B) expression in the

CD133 and CD44 subsets is presented.

(C) Western blot of ID1 and ID3 is illustrated.

(D) Mean tumor weights for LS174T following s.c.

injection of PRS, ID1KD, ID3KD, or ID1/ID3KD cells

(n = 32 tumors per group) are shown.

(E) Mean tumor weights for sample 1 are presented; no

tumors were observed in the ID1/ID3KD group.

(F) Mean tumor weights for sample 2 are shown.

(G) Mean tumor weights for sample 3 are presented;

no tumors were observed in the ID1/ID3KD group.

(H) Photographs of excised tumors from mice injected

with either ID1/ID3KD or PRS cells are shown.

For (E)–(G) n = 20 tumors/group. Error bars represent ±

SD. ***p < 0.0001, **p < 0.001, *p < 0.01.

See also Figure S2.
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Figure 3. Effect of ID1/ID3KD on Xenograft Histology

(A–D) Quantification of MVD by CD31 staining (A), apoptosis by M30 staining (B), proliferation index by MIB1 staining (C), and percent necrosis (D) are shown.

(E) Histological depiction of the staining (magnification 2003) is illustrated; scale bars represent 50 mm.

(F) Proliferative activity of the PRS and ID1/ID3KD cells for LS174T, sample 1 and 3, is presented.

(G and H) Quantification of CK20 (G) and MUC2 (H) staining is shown.

The histological data are displayed as the mean per high-power field, with ten high-power fields counted per slide, and all error bars represent ± SEM. ***p <

0.0001, **p < 0.001, *p < 0.01. n.s., not significant.

See also Figure S3.
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differentiation markers: Muc2 (van de Wetering et al., 2002), and

cytokeratin 20 (CK20) (Vermeulen et al., 2008). There was

increased expression of differentiation markers in the ID1/
782 Cancer Cell 21, 777–792, June 12, 2012 ª2012 Elsevier Inc.
ID3KD xenografts, which was not seen in the individual KD or

control groups (Figures 3G, 3H, and S3B). This implies that the

induction of differentiation is a potential mechanism through



Figure 4. ID1/ID3KD Impairs CC-IC Self-

Renewal

(A) Comparison of the sphere-replating frequency

(SRF) for PRS, ID1KD, ID3KD, and ID1/ID3KD, as

determined by in vitro LDAs, is shown; 95% CI is

shown in parentheses.

(B) In vivo serial transplantation assays of LS174T

cells derived from PRS, ID1KD, ID3KD, or ID1/

ID3KD xenografts are presented.

(C) Comparison of the sphere-replating frequency

(SRF) for the PKH26+ and PKH26� subsets of PRS

and ID1/ID3KD cells is shown; in parentheses is

the 95% CI.

(D) Confocal images of symmetric and asymmetric

division in PKH26+ cells derived from sample 1 are

presented: gray scale overlay, DAPI, Numb, and

merge (magnification 603); scale bars represent

10 mm.

(E) Determination of percent asymmetric, sym-

metric, and ambiguous cell divisions in the PRS

and ID1/ID3KD groups (n = 100 cells counted: 50

cells per sample with 2 samples analyzed) is

illustrated.

Error bars represent 95% CI. See also Figure S4.
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which ID1/ID3KD is exerting its effect (Nam and Benezra, 2009;

Anido et al., 2010).

ID1/ID3KD Impairs CC-IC Tumor-Initiating Capacity
To determine whether ID1/ID3KD was affecting the capacity of

serial sphere formation, experiments were undertaken where

clonally derived primary cells were replated at limiting dilution

into secondary sphere-forming assays. The mean sphere-form-

ing capacity decreased on average 300-fold in the ID1/ID3KD

versus the other groups (Figures 4A and S4A). These results

suggested that ID1 and ID3 together play an essential role in

the ability of CC-ICs to sustain propagation through a self-

renewal-like mechanism. Despite showing a functional loss
Cancer Cell 21, 777–7
of serial sphere formation in the ID1/

ID3KD group, we did not identify a

significant change in the CD133 or

CD44 expression status either in vitro or

in vivo (data not shown). Thus, serial

sphere formation remains a functional

definition, which may or may not be

reflected in the phenotypic profile.

To conclusively establish that ID1 and

ID3 were affecting the capacity for serial

tumor initiation of CC-ICs at the clonal

level, in vivo secondary and tertiary trans-

plantation studies were carried out (Fig-

ures 4B and S4B). This work could only

be carried out using LS174T because

the remaining samples did not yield

primary tumors in the ID1/ID3KD group

(Figures 2E–2G). There was a 200-fold

decrease in tumor reinitiation capacity in

the ID1/ID3KD group, a difference that

was maintained upon multiple passages

(Figure 4B). To ensure that KD was main-
tained, westerns were carried out on the ID1/ID3KD xenograft

cells prior to passage (Figure S2C). The decreased capacity for

serial tumor initiation was only observed in the ID1/ID3KD group

(Figure 4B). Because the in vitro proliferative capacity was

equally reduced in all three experimental groups (Figure 3F),

our results suggest that the major effect of ID1/ID3KD is not

through impaired proliferation but rather through inhibition of

the serial tumor initiation capacity of CC-ICs.

ID1/ID3KD Influences Asymmetric Cell Division
The profound loss of CC-ICs and the direct effects we observed

on tumor initiation prompted us to determine whether ID1 and

ID3 were influencing the asymmetric versus symmetric fates of
92, June 12, 2012 ª2012 Elsevier Inc. 783



Cancer Cell

ID1 and ID3 Regulate Colon Cancer-Initiating Cells
the daughter cells derived when CC-ICs divided. However, the

ability to address this question was dependent on finding

a method to purify the CC-IC fraction. The CC-IC-enriched

cultures were labeled with PKH26, a lipophilic fluorescent dye,

which labels relatively quiescent cells within a bulk population

(Cicalese et al., 2009; Pece et al., 2010). We found that human

colon cancer contains a small population of slowly dividing cells

that retain the PKH26 dye and are enriched for CC-ICs, whereas

the majority of the cells that progressively lose the dye through

proliferation are depleted of CC-IC function. The PKH26+ popu-

lation was significantly higher in the control (4.5%± 1.7%) versus

ID1/ID3KD (0.5% ± 0.3%) group, suggesting that there were

fewer label-retaining cells in the ID1/ID3KD group (Figure S4C).

To determine if this correlated with the frequency of sphere-

forming cells, in vitro serial-replating LDAswere carried out using

flow-sorted PKH26+ and PKH26� cell subsets for both control

and ID1/ID3KD cells. For the control group the sphere-initiating

frequency was 1 in 1.2–1.4 in the PKH26+ cells, representing

a significant enrichment over bulk cultures, much better than

established cell surface markers (CD133 and CD44). The

frequency of sphere-initiating cells in the PKH26� fraction was

significantly lower (1 in 265–417) than the PKH26+ fraction. In

the ID1/ID3KD group, sphere-initiating cells were only detected

in the PKH26+ subset with a frequency of approximately 1 in

2.4–3.9 (Figure 4C). There were no sphere-initiating cells de-

tected in the ID1/ID3KD PKH26� subset for sample 1; however,

in LS174T therewere very rare (1 in 75,876) sphere-initiating cells

at (Figure 4C).

We hypothesized that the difference in the initiating capacity

and PKH26 labeling in the ID1/ID3KD versus control group was

related to a shift in the proportion of symmetric versus asym-

metric cell divisions. To further investigate this possibility,

Numb was utilized as a marker of asymmetric cell division

(Cicalese et al., 2009; Pece et al., 2010; Kharas et al., 2010).

PKH26+ cells from each group were stained for Numb expres-

sion to determine the dominant mode of cell division (Figure 4D).

The control cells underwent both asymmetric and symmetric

divisions at a frequency of 24% and 56%, respectively. In

contrast in the ID1/ID3KD group approximately 70% of dividing

cells displayed equal distribution of Numb, with 30% of the cell

divisions being ambiguous (Figure 4E). In the cells undergoing

symmetric division, approximately 90% of the daughter cells

expressed CK20 (Figure S4D), amarker of colon cancer differen-

tiation; in the remaining 10% approximately half was weakly

positive, and the remainder was negative. This result suggests

that the majority of cell divisions that the ID1/ID3KD cells

undergo are symmetric giving rise to two differentiated progeny.

Collectively, this work along with our functional serial tumor

initiation experiments provide strong support that ID1/ID3 is

governing CC-IC stem cell functions.

ID1/ID3KD Increases Sensitivity to Oxaliplatin
The chemoresistance of C-ICs has emerged as an important

cellular property that enables tumors to regrow following initial

cytoreductive therapy. Prior literature has identified a potential

role for ID1 in maintaining the chemoresistance of cancer cells

in a variety of solid tumors; however, to our knowledge, no

such data exist for colon cancer (Cheung et al., 2004). Oxaliplatin

is a chemotherapeutic agent commonly used in colon cancer
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therapy. In LS174T the IC50 for the control cells was approxi-

mately 200 mM oxaliplatin versus 50 mM in the ID1/ID3KD group;

similar results were obtained with sample 2 (Figures 5A and 5B).

The enhanced chemosensitivity was also reflected in the

approximate 2-fold increase in apoptotic cells following oxalipla-

tin exposure (IC50), as determined by both annexinV and cleaved

caspase-3 staining (Figures 5C–5E). To determine whether

oxaliplatin had any effect on in vitro propagation of CC-ICs,

sphere-replating assays were carried out in the presence of

oxaliplatin. In vitro treatment of the control transduced cells

with oxaliplatin (IC50) did not significantly change sphere-

replating capacity. In contrast the ID1/ID3KD cells displayed a

further 5-fold decrease in sphere-replating capacity following

treatment (Table 1; Figure 5F). To determine if this result could

be translated to an in vivo model, xenograft studies were carried

out with ongoing oxaliplatin treatment to transplanted mice

(LS174T). Despite a highly significant decrease in tumor growth

in the ID1/ID3KD versus control groups, the addition of oxalipla-

tin led to a further significant decrease in mean tumor weight

(Figure 5G). There was no significant difference in the tumor

weights in the oxaliplatin versus vehicle-treated control groups.

This was likely related to the dose of oxaliplatin; however, due

to toxicity in immune-deficient mice. we were unable to increase

the dose. Nevertheless, even in the absence of an objective

tumor response in the control group, our results demonstrated

a further decrease in xenograft formation in the ID1/ID3KD

oxaliplatin-treated group as compared to the vehicle-treated

ID1/ID3KD group, indicating that ID1/ID3KD was potentiating

tumor cell killing.

ID1/ID3KD Decreases Tumor-Initiating Capacity
through Downregulation of p21
To further delineate the molecular machinery by which ID1/ID3

affects tumor-initiating capacity, we investigated a known target,

p21. ID1-mediated repression of p21 represents amechanism to

preserve self-renewal capacity in endothelial progenitor cells

(Ciarrocchi et al., 2007). Our interest was to determine whether

p21, a cell-cycle inhibitor, was playing a similar role in CC-ICs.

Interestingly, western blot analysis in the CC-IC lines revealed

that p21 expression levels in vitro were high in the parental and

control transduced cells but undetectable in the ID1/ID3KD cells

(Figure 6A); the exact opposite of the pattern reported in endo-

thelial progenitor cells (Ciarrocchi et al., 2007). Examination of

p21 expression by qPCR revealed a trend toward increased

expression in the CD133+ versus CD133� subsets; however,

this did not reach statistical significance. No difference was

detected in the level of p21 mRNA expression in the CD44+

and CD44� fractions (Figure 6B). Evaluation of p21 protein

expression using immunohistochemistry revealed clearly higher

levels in both the CD133+ and CD44+ fractions, as compared to

their negative counterparts (Figure 6C). From these results we

can infer that the effect of ID1/ID3 on p21 is likely through

stabilization of the protein as opposed to regulation at a tran-

scriptional level.

In contrast to endothelial progenitor cells, silencing of p21 in

leukemic and normal hematopoietic cells impairs stem cell

self-renewal (Cheng et al., 2000; Viale et al., 2009), although, to

our knowledge, no studies have explored lowered p21 expres-

sion in the context of ID1/ID3KD. To determine whether the



Figure 5. ID1/ID3KD Increases the Sensitivity of CC-ICs to Oxaliplatin

(A and B) Proliferation analysis following a 48 hr oxaliplatin exposure for LS174T and sample 2 (mean ± SEM) is illustrated.

(C) Percent apoptotic cells as measured by annexin V analysis (mean ± SEM) is shown.

(D) Cleaved caspase-3 staining (mean ± SEM) is presented.

(E) Cleaved caspase-3 FACS plots of oxaliplatin-treated ID1/ID3KD and PRS cells from sample 1 and 2 (C–E n = 10 per group) is illustrated.

(F) LDA analysis of SFUs after exposing ID1/ID3KD cells to oxaliplatin (IC50) is shown; error bars represent 95% CI.

(G) Tumor weight following oxaliplatin treatment is presented. PRS or ID1/ID3KD LS174T cells were injected s.c. and the tumors allowed to grow until 0.5 cm3;

mice were then treated with oxaliplatin (mean ± SD).

***p < 0.0001, **p < 0.001, *p < 0.01.
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Table 1. Comparison of the SRF for the Control versus ID1/ID3KD Cells in the Presence and Absence of Oxaliplatin

CC-IC-Enriched Cultures PRS SRF In Vitro LDA

PRS with Oxaliplatin SRF

In Vitro LDA ID1/ID3KD SRF In Vitro LDA

ID1/ID3KD with Oxaliplatin

SRF In Vitro LDA

Sample 1 1 in 40 (19–53) 1 in 32 (11–43) 1 in 12,392 (9,048–20,810) 1 in 52,379 (30,007–75,228)

Sample 2 1 in 27 (15–39) 1 in 34 (13–41) 1 in 14,740 (8,660–29,105) 1 in 64,399 (49,583–79,332)

LS174T 1 in 39 (24–70) 1 in 30 (17–45) 1 in 3,493 (2,400–6,930) 1 in 19,215 (13,901–28,985)

All data are represented as the SRF for each group; the 95% CI is shown in parentheses.
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decreased expression of p21 observed in the ID1/ID3KD group

was playing a functional role in maintaining tumor-initiating

capacity, a genetic rescue experiment was designed to reintro-

duce p21 into the ID1/ID3KD cells. Sample 2 and LS174T were

tested by in vivo xenograft formation; ID1/ID3KD/p21 overex-

pressing (OE) xenografts were significantly larger than those

generated by injection of ID1/ID3KD cells alone, although they

remained significantly smaller than controls (Figures 6D and

6E). This partial rescue of tumor formation indicated that the

decreased expression of p21 in the ID1/ID3KD cells was

functionally important for tumor initiation and maintenance.

Secondary LDA experiments revealed a sustained increase in

CC-IC frequency in the ID1/ID3KD/p21OE cells as compared

to ID1/ID3KD alone (Figure 6F), establishing that CC-IC sustain-

ability is affected by p21. Our preliminary data suggest that

one possible mechanism by which ID1/ID3 may influence p21

protein stability is through inhibitory effects on phosphatase

and tensin homolog (PTEN). Genetic KD of ID1/ID3 in our model

system results in the re-expression of PTEN at the protein level

(Figure S2D). Our results lend additional support to the notion

that the ID/p21 regulatory axis is important in tumor initiation

and warrants further investigation, including confirmation of

the role of PTEN.

Effect of ID1/ID3KD on Cell Cycle and Accumulation
of DNA Damage-Induced Foci
It is well established that p21 inhibits cell-cycle progression

by binding to G1 cyclin/CDK complexes (Abbas and Dutta,

2009). Because p21 protein expression was decreased

following ID1/ID3KD, it was important to determine whether

this reflected a change in cell-cycle distribution. The mean

proportion of cells in G0/G1 was significantly higher in the

control versus ID1/ID3KD cells, whereas the opposite was

observed for cells in S phase. There was no significant differ-

ence between the two groups in the proportion of cells in

G2/M; however, there was a trend toward ID1/ID3KD having

more cells in G2/M (Figure 7A). In support of the cell-cycle

results, BrdU incorporation experiments demonstrated that

the ID1/ID3KD group exhibited a 2- to 3-fold increase in BrdU

incorporation, as compared to the control cells (Figures 7B

and 7C). p21 has previously been shown to play a critical role

in leukemia stem cell (LSC) maintenance, where it imposes

a cell-cycle restriction that in turn acts to limit the accumulation

of DNA damage in LSCs (Viale et al., 2009). In our samples

there was an approximate 2-fold increase in gH2AX foci in

the ID1/ID3KD versus control cells (Figures 7D and 7E). These

results suggest that the reduced levels of p21 and the subse-

quent lack of cell-cycle restriction resulted in an accumulation

of DNA damage leading to CC-IC exhaustion.
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DISCUSSION

Our findings establish that ID1 and ID3 govern self-renewal

of CC-ICs derived from primary colon cancer samples. Silencing

both genes together resulted in a dramatic loss of tumor-

initiating potential. Second, we found that ID1/ID3 orchestrate

their regulation of CC-ICs via p21, providing a linkage of the

ID1/ID3-p21 regulatory axis with maintenance of tumor initiation

capacity in any solid tumor C-IC. Finally, we show that in the

presence of oxaliplatin, a commonly used chemotherapeutic

agent, ID1/ID3 functions to protect the tumor-initiating capacity

of CC-ICs. Following ID1/ID3KD, exposure to oxaliplatin re-

sulted in a further decrease in tumor-initiating capacity. Thus,

our study connects the capacity for serial propagation of

tumor-initiating cells with CC-IC chemoresistance, knowledge

that could be exploited in future therapeutic strategies.

ID1/ID3 Govern Self-Renewal
As expected from studies of ID family proteins in other model

systems, we observed effects on proliferation and angiogenesis

upon silencing of ID1 and ID3 individually or together. However,

these effects alone could not explain the drastic decrease in

xenograft growth observed in the ID1/ID3KD group. The ID

proteins have a central role in maintaining cells in an immature

state; in keeping with this the ID1/ID3KD group displayed

increased expression of markers of intestinal cell differentiation,

a finding that correlates with a decrease in self-renewal potential.

Emerging data indicate that the ID genes play an important role in

maintaining C-ICs in a variety of solid tumors (Hollnagel et al.,

1999; Nam and Benezra, 2009; Perry et al., 2007). Most recently,

Andio et al. reported that TGF-b-induced inhibition of CD44+

glioblastoma-initiating cells was due to repression of ID1 and

ID3, pointing to a potential link between ID genes and C-IC

self-renewal (Anido et al., 2010). Our data support this prior

work by providing direct evidence that ID1/ID3 govern CC-IC

maintenance.

Moreover, we demonstrate that ID1/ID3KD dramatically alters

the ratio of asymmetric and symmetric cell divisions in the CC-IC

fraction. This provides another line of evidence linking ID1/ID3

with canonical stem cell properties. Numb staining of PKH26+

control cells suggested that these cells normally undergo both

asymmetric and symmetric cell divisions. In contrast following

ID1/ID3KD the majority of divisions became symmetric, giving

rise to two daughter cells both displaying evidence of differenti-

ation, as demonstrated by increased CK20 staining. These

results are in keeping with prior studies in normal neural stem

cells where high ID1 expression drove self-renewal by promoting

asymmetric cell division (Nam and Benezra, 2009). They found

that ID1 was expressed as a gradient with the highest levels in



Figure 6. ID1/ID3KD Decreased the Self-Renewal Capacity of CC-IC through p21 Downregulation

(A) Western blot analysis of p21 protein levels in PRS versus ID1/ID3KD cells is presented. Displayed are LS174T, samples 1 and 2, and LS174T transduced with

second set of ID1/ID3KD hairpins. GAPDH was utilized as the housekeeping gene.

(B) p21 mRNA expression in CC-IC-enriched and nonenriched fractions (n = 3 replicates) is shown; error bars indicate ± SEM.

(C) Immunohistochemical staining for p21 on CD44+ and CD44� cell subsets is illustrated. Top scale bars (1003) represent 100 mm; bottom scale bars (4003)

represent 50 mm.

(D and E) Tumor weights for LS174T and sample 2, and three groups, PRS, ID1/ID3KD, and ID1/ID3KD with p21 overexpression (ID1/ID3KDp21OE), are

presented. In both samples expression of p21 partially rescued the effect of ID1/ID3KD on xenograft growth; mean ± SD is shown (n = 20 injections per group).

(F) In vivo secondary transplantation LDA with LS174T.

Error bars represent 95% CI. ***p < 0.0001, **p < 0.001.
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Figure 7. Effect of ID1/ID3KD on Cell Cycle and DNA Damage
(A) Cell-cycle distribution was determined by flow cytometry (n = 3 replicates).

(B and C) BrdU incorporation analysis (n = 3 replicates) is illustrated.

(D) Quantification of gH2AX staining (n = 100 cells counted) is shown.

(E) Confocal images of gH2AX staining (360) are presented; scale bars represent 10 mm.

For bar graphs, mean ± SEM is shown; ***p < 0.0001, **p < 0.001, *p < 0.01. ns, not significant.
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self-renewing neural stem cells and the lower levels in non-stem

cells correlating with increased expression of markers of neural

cell differentiation (Nam and Benezra, 2009). Similarly, CC-IC

confocal imaging of ID1 and ID3 in our PKH26+ and PKH26�

colon cancer cells demonstrated ID1/ID3 staining in both

subsets; however, the expression level appeared higher in the

PKH26+ cells, as compared to the PKH26� cells (data not

shown). It is possible that, similar to neural stem cells (Nam

and Benezra, 2009), ID expression may be on a continuum

where colon cancer cells expressing the highest combined

levels have the capacity to initiate tumors. Our work, as well as

that of others, clearly indicates that ID1/ID3 play a central role

in both normal stem cell and C-ICmaintenance, making it essen-
788 Cancer Cell 21, 777–792, June 12, 2012 ª2012 Elsevier Inc.
tial that the molecular mechanisms driving this process are

better understood.

ID1/ID3 Function through Effects on p21
We initially hypothesized that the mechanism by which

ID1/ID3KD was decreasing tumor-initiating capacity may be

similar to the effect observed in endothelial progenitor cells

where ID1KD resulted in increased p21 levels and a subsequent

decrease in self-renewal capacity (Ciarrocchi et al., 2007). Unex-

pectedly, we observed the exact opposite: p21 was highly

expressed in the parental and control transduced cells, whereas

the ID1/ID3KD cells displayed an almost complete loss of p21

expression in all samples tested. Moreover, CD133+ and
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CD44+ CC-IC-enriched fractions expressed significantly higher

p21 protein levels as compared to their negative counterparts.

This result suggests that in the context of CC-ICs, p21

may function to maintain ID1/ID3-dependent tumor-initiating

potential.

Interestingly, an association between ID1 overexpression

and high levels of p21 was initially identified in a mouse

mammary carcinoma model that showed ID1 overexpression

resulted in tumors that continued to proliferate despite high

levels of p21 (Swarbrick et al., 2008). These authors hypothe-

sized that ID1 must act downstream of p21, rendering cells

refractory to p21-dependent cell-cycle arrest. However, this

was not the case in our colon cancer samples because the

reintroduction of p21 resulted in a partial rescue of the ID1/

ID3KD-induced tumor-initiating defect, providing strong genetic

evidence that p21 plays a functional role in maintaining CC-ICs.

One possible explanation for the rescue only being partial is that

the effect of ID1/ID3 on proliferation is independent of their

combined effects on p21 and self-renewal. Each of the ID1KD,

ID3KD, and ID1/ID3KD groups exhibited an approximate 2-fold

decrease in proliferative capacity, yet the effect on self-renewal

was only seen in the ID1/ID3KD cells. Alternatively, ID1/ID3KD

may have influenced other downstream pathways in addition

to p21 that are involved in the maintenance of CC-ICs. Studies

of a variety of normal and neoplastic stem cell systems are point-

ing to the integrated functioning of multiple genetic and epige-

netic components working together to maintain self-renewal

potential (Morrison and Spradling, 2008; Shackleton et al.,

2009; He et al., 2009).

One possible mechanism by which ID1/ID3 may regulate p21

is through inhibition of PTEN. Lee et al. have previously shown

that ID1 can negatively regulate PTEN at a transcriptional level

in MCF7 human breast cancer cells (Lee et al., 2009). Further-

more, attenuation of PTEN has been shown to increase p21

levels through stabilization of the protein (Lin et al., 2007). Our

preliminary data also show that ID1/ID3KD results in the re-

expression of PTEN. In renal cell carcinoma, p21 stabilization

is one of the key mechanisms by which PTEN-deficient tumors

escape chemotherapy-induced cell death (Lin et al., 2007). The

notion that p21, a cell-cycle inhibitor, is maintaining self-renewal

seems counterintuitive. However, there is strong evidence from

murine models of normal hematopoietic and leukemic stem cells

that p21 is an important regulator of self-renewal. In the absence

of p21, hematopoietic and leukemic stem cells underwent func-

tional exhaustion and were unable to maintain the clone (Cheng

et al., 2000; Viale et al., 2009).

Our results support a role for p21 in the prevention of CC-IC

exhaustion through cell-cycle restriction and the resulting accu-

mulation of DNA damage as shown by increased gH2AX foci.

These results are consistent with a number of publications

over the past 20 years that have recognized a role for p21 in

the protection of cancer cells from stress and DNA damage (Ma-

hyar-Roemer and Roemer, 2001; Bene and Chambers, 2009;

Gorospe et al., 1996; Sharma et al., 2005; Tian et al., 2000).

Bunz et al. (1998) were the first to demonstrate that p21�/� colon

cancer cells treated with a DNA-damaging agent undergo

aberrant progression through S and M phases of the cell-

cycle-triggering apoptosis. Also in support of our findings, there

are numerous reports linking p21 expression with protection of
colon cancer cells from apoptosis induced by a wide range

of insults, including exposure to radiation (Tian et al., 2000),

chemotherapeutic agents (Mahyar-Roemer and Roemer, 2001;

Bene and Chambers, 2009), and cryotherapy (Sharma et al.,

2005). Finally, clinical trial data from patients with rectal tumors

undergoing neoadjuvant chemoradiation show association

between increased p21 expression and the development of

resistance resulting in decreased disease-specific survival

(Kuremsky et al., 2009; Rau et al., 2003). Taken together, these

observations support the clinical relevance of our findings and

extend the functional roles of p21 to include preservation of

CC-IC self-renewal.

Role of ID1/ID3 in Chemoresistance
Our studies also provide a direct link between the capacity of

CC-ICs for serial tumor initiation and chemoresistance. Although

existing literature supports a role for ID1 and p21 in maintaining

chemoresistance in some solid tumors (Cheung et al., 2004;

Hu et al., 2009; Li et al., 2007), to our knowledge, the effect of

ID1/ID3KD on colon cancer cells and their response to treatment

with oxaliplatin has not been investigated. We found that the

dose of oxaliplatin that reduced overall cell proliferation did not

inhibit the sphere-replating capacity of control transduced cells.

This finding may in part explain clinical observations related to

oxaliplatin treatment. When oxaliplatin is used in the adjuvant

setting with 5-fluorouracil (5-FU), the tumor response rates are

in the range of 40%–50%,whereas the actual survival advantage

conferred is on average less than 10% (Alberts and Wagman,

2008; Chau and Cunningham, 2009). This suggests that the

response rates may actually be monitoring decreased prolifera-

tive capacity of the bulk cancer cells; however, if there are

CC-ICs surviving despite oxaliplatin treatment, the drug may

not affect their function. In contrast, oxaliplatin treatment of

ID1/ID3KD cells decreased tumor initiation capacity, which

warrants further investigation of the linkage between CC-ICs

and chemoresistance. If this linkage is universally important,

then understanding themechanisms that drive C-IC self-renewal

will lead to the development of therapeutic agents that target this

essential aspect of tumor maintenance and may potentiate the

efficacy of chemotherapies.

In conclusion our study demonstrates the feasibility of utilizing

primary human cancer cells to enrich for CC-IC activity thereby

providing a powerful tool to carry out genetic approaches to

unravel the molecular pathways sustaining tumor growth. Our

findings point to the central role that ID1/ID3 and p21 play in

regulating the tumor-initiating program of CC-ICs and in govern-

ing their response to chemotherapy. Collectively, our findings

put forth self-renewal pathways as potential targets for the

development of effective therapies to eradicate CC-ICs.

EXPERIMENTAL PROCEDURES

Culture and Xenografting of Colon Cancer Cells

Human colon cancer specimens were obtained with informed patient consent

as approved by the Research Ethics Board (University Health Network,

Toronto). Cells were isolated and cultured in DMEM/F-12 with EGF and

bFGF as previously described by Kreso and O’Brien (2008). Unless otherwise

noted, tumor cells were injected s.c. into NOD/SCID mice using procedures

that conform to the standards approved by the Animal Care Committee

(Ontario Cancer Institute, Toronto).
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Viral Vectors

Short hairpins to ID1 and ID3 were obtained from Dr. J. Massague (Memorial

Sloan-Kettering Cancer Center) (Gupta et al., 2007). Dr. J. Moffat (University

of Toronto) provided a second set of hairpins to ensure that the effects were

not off target. For combined KD, cells were sequentially infected and puro-

mycin selected. For p21 overexpression a pBabe construct (Dr. G. Peters)

was utilized for both overexpression and control viruses.

LDAs

Viable cells were diluted, and defined cell doses were (i) injected into mice

to assess CC-IC frequency in vivo and (ii) plated in 96-well plates to assess

the number of sphere-forming units (SFUs) in vitro. The ELDA website was

used to determine the estimated cell frequency (http://bioinf.wehi.edu.au/

software/elda/index.html). For in vitro LDAs a number of cell doses were

tested, and the lowest cell dose was one cell per well, all plated in a fixed

volume of 200 ml per well. Any well with one or more spheres was considered

positive for ELDA. To assess the number of colony-forming units (CFUs),

similar methods were used, but cells were plated in medium containing

10% serum.

Statistical Analysis

PRISM software was used to analyze results; values are reported as mean ±

SD unless otherwise indicated. The limiting dilution function (http://bioinf.

wehi.edu.au/software/elda/index.html) was used to calculate the estimated

cell frequencies for LDAs; 95% confidence intervals (CIs) are reported for

each frequency.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, five tables, and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.ccr.2012.04.036.

ACKNOWLEDGMENTS

Wewould like to thank Eric Lechman, Faiyaz Notta, Elisa Laurenti, andMichael

Milyavsky for their critical review of this manuscript; Fanong Meng, Mayleen

Sukhram, and Viktor Son for providing colon cancer samples; PRP for

assistance with immunohistochemistry; and Shane Harding, Peter Dirks, and

Ian Clarke for their assistance with planning experiments. This work was

supported by funds from the Krandel Fund at Princess Margaret Hospital,

Genome Canada through the Ontario Genomics Institute, Ontario Institute

for Cancer Research and a Summit Award with funds from the province of

Ontario, the Canadian Institutes for Health Research, and a Canada Research

Chair. This research was funded in part by the Ontario Ministry of Health and

Long Term Care (OMOHLTC). The views expressed do not necessarily reflect

those of the OMOHLTC.

Received: March 4, 2010

Revised: September 14, 2011

Accepted: April 23, 2012

Published: June 11, 2012

REFERENCES

Abbas, T., and Dutta, A. (2009). p21 in cancer: intricate networks and multiple

activities. Nat. Rev. Cancer 9, 400–414.

Alberts, S.R., and Wagman, L.D. (2008). Chemotherapy for colorectal cancer

liver metastases. Oncologist 13, 1063–1073.

Al-Hajj, M., and Clarke, M.F. (2004). Self-renewal and solid tumor stem cells.

Oncogene 23, 7274–7282.

Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke,

M.F. (2003). Prospective identification of tumorigenic breast cancer cells.

Proc. Natl. Acad. Sci. USA 100, 3983–3988.
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